Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED Archive for Rational Mechanics and Analysis Pub Date : 2025-03-20 DOI:10.1007/s00205-025-02092-1
Mitia Duerinckx, Lucas Ertzbischoff, Alexandre Girodroux-Lavigne, Richard M. Höfer
{"title":"Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions","authors":"Mitia Duerinckx,&nbsp;Lucas Ertzbischoff,&nbsp;Alexandre Girodroux-Lavigne,&nbsp;Richard M. Höfer","doi":"10.1007/s00205-025-02092-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the multiscale viscoelastic Doi model for suspensions of Brownian rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-propelled particles. We consider the regime of a small Weissenberg number, which corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and we analyze the resulting hydrodynamic approximation. More precisely, we show the asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called ordered fluid models, as an expansion in the Weissenberg number. The result holds for zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way, we establish several new well-posedness and regularity results for nonlinear fluid models, which may be of independent interest.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02092-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multiscale viscoelastic Doi model for suspensions of Brownian rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-propelled particles. We consider the regime of a small Weissenberg number, which corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and we analyze the resulting hydrodynamic approximation. More precisely, we show the asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called ordered fluid models, as an expansion in the Weissenberg number. The result holds for zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way, we establish several new well-posedness and regularity results for nonlinear fluid models, which may be of independent interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
期刊最新文献
Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions The Least Action Admissibility Principle Conservation Laws for p-Harmonic Systems with Antisymmetric Potentials and Applications BCS Critical Temperature on Half-Spaces Well-Posedness of Degenerate Initial-Boundary Value Problems to a Hyperbolic-Parabolic Coupled System Arising from Nematic Liquid Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1