{"title":"Local operator algebras of charged states in gauge theory and gravity","authors":"P. A. Grassi, M. Porrati","doi":"10.1007/JHEP03(2025)175","DOIUrl":null,"url":null,"abstract":"<p>Powerful techniques have been developed in quantum field theory that employ algebras of local operators, yet local operators cannot create physical charged states in gauge theory or physical nonzero-energy states in perturbative quantum gravity. A common method to obtain physical operators out of local ones is to dress the latter using appropriate Wilson lines. This procedure destroys locality, it must be done case by case for each charged operator in the algebra, and it rapidly becomes cumbersome, particularly in perturbative quantum gravity. In this paper we present an alternative approach to the definition of physical charged operators: we define an automorphism that maps an algebra of local charged operators into a (non-local) algebra of physical charged operators. The automorphism is described by a formally unitary intertwiner mapping the exact BRS operator associated to the gauge symmetry into its quadratic part.</p><p>The existence of an automorphism between local operators and the physical ones, describing charged states, allows to retain many of the results derived in local operator algebras and extend them to the physical-but-nonlocal algebra of charged operators as we discuss in some simple applications of our construction. We also discuss a formal construction of physical states and possible obstructions to it.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)175.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)175","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Powerful techniques have been developed in quantum field theory that employ algebras of local operators, yet local operators cannot create physical charged states in gauge theory or physical nonzero-energy states in perturbative quantum gravity. A common method to obtain physical operators out of local ones is to dress the latter using appropriate Wilson lines. This procedure destroys locality, it must be done case by case for each charged operator in the algebra, and it rapidly becomes cumbersome, particularly in perturbative quantum gravity. In this paper we present an alternative approach to the definition of physical charged operators: we define an automorphism that maps an algebra of local charged operators into a (non-local) algebra of physical charged operators. The automorphism is described by a formally unitary intertwiner mapping the exact BRS operator associated to the gauge symmetry into its quadratic part.
The existence of an automorphism between local operators and the physical ones, describing charged states, allows to retain many of the results derived in local operator algebras and extend them to the physical-but-nonlocal algebra of charged operators as we discuss in some simple applications of our construction. We also discuss a formal construction of physical states and possible obstructions to it.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).