Prospects for Using Biomaterials Based on Magnesium Phosphates for Bone Tissue Repair

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Inorganic Materials Pub Date : 2025-03-22 DOI:10.1134/S0020168524701620
I. I. Preobrazhenskiy, E. S. Klimashina, Ya. Yu. Filippov, P. V. Evdokimov, V. I. Putlyaev
{"title":"Prospects for Using Biomaterials Based on Magnesium Phosphates for Bone Tissue Repair","authors":"I. I. Preobrazhenskiy,&nbsp;E. S. Klimashina,&nbsp;Ya. Yu. Filippov,&nbsp;P. V. Evdokimov,&nbsp;V. I. Putlyaev","doi":"10.1134/S0020168524701620","DOIUrl":null,"url":null,"abstract":"<p>Regenerative medicine approaches require the creation of new types of resorbable inorganic materials for use in bone tissue engineering. This review considers magnesium-based materials, including magnesium phosphates, which are characterized by a high dissolution degree in the body environment, and their prospects for creating implants for the treatment of bone tissue defects, including cements, ceramics, and composite scaffolds.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 12","pages":"1391 - 1404"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerative medicine approaches require the creation of new types of resorbable inorganic materials for use in bone tissue engineering. This review considers magnesium-based materials, including magnesium phosphates, which are characterized by a high dissolution degree in the body environment, and their prospects for creating implants for the treatment of bone tissue defects, including cements, ceramics, and composite scaffolds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于磷酸镁的生物材料修复骨组织的前景
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Materials
Inorganic Materials 工程技术-材料科学:综合
CiteScore
1.40
自引率
25.00%
发文量
80
审稿时长
3-6 weeks
期刊介绍: Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Prospects for Using Biomaterials Based on Magnesium Phosphates for Bone Tissue Repair Chemical Interaction in the Li+,Na+,K+||F–,Br– System and Identification of Low-Melting-Point Phase Fields in a 3D Model of the Stable Composition Triangle LiF–NaF–KBr Thermal Conductivity of Ca1–x–ySrxNdyF2+y Solid Solution Single Crystals Electrochemical Performance of MnO2/C Electrodes in Neutral Aqueous Electrolytes Electronic Structure of Cd-Substituted Silicon Clathrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1