Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4).

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-03-20 DOI:10.1021/acs.molpharmaceut.4c00984
Lucy Martinez-Guerrero, Patricia A Vignaux, Joshua S Harris, Thomas R Lane, Fabio Urbina, Stephen H Wright, Sean Ekins, Nathan J Cherrington
{"title":"Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4).","authors":"Lucy Martinez-Guerrero, Patricia A Vignaux, Joshua S Harris, Thomas R Lane, Fabio Urbina, Stephen H Wright, Sean Ekins, Nathan J Cherrington","doi":"10.1021/acs.molpharmaceut.4c00984","DOIUrl":null,"url":null,"abstract":"<p><p>Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug-drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) <i>in vitro</i> inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC<sub>50</sub> values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC<sub>50</sub> values were then compared to the drug plasma concentration as per the 2020 FDA drug-drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00984","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug-drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) in vitro inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC50 values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC50 values were then compared to the drug plasma concentration as per the 2020 FDA drug-drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Impact of Composition of Lipid-Based Formulations on First-Pass Drug Metabolism after Oral Administration. Lipopolysaccharide Induces Resistance to CAR-T Cell Therapy of Colorectal Cancer Cells through TGF-β-Mediated Stemness Enhancement. Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4). Lyophilization Strategy Enhances the Thermostability and Field-Based Stability of Conjugated and Comixed Subunit Liposomal Adjuvant-containing Tuberculosis Vaccine Formulation (ID93 + GLA-LSQ). Enhanced Retention of NTSR1-Targeted Radionuclide Therapeutics via Covalent Inhibitors in Pancreatic, Colorectal, and Prostate Cancer Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1