Biomaterials in Relative Devices for Traumatic Cataract: Recent Advances and Future Perspectives.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-03-20 DOI:10.1021/acsbiomaterials.4c02117
Si-Ting Sheng, Xing-Di Wu, Jing-Wei Xu, Zhe Xu, Shuang Ni, Wen Xu, Zhi-Kang Xu
{"title":"Biomaterials in Relative Devices for Traumatic Cataract: Recent Advances and Future Perspectives.","authors":"Si-Ting Sheng, Xing-Di Wu, Jing-Wei Xu, Zhe Xu, Shuang Ni, Wen Xu, Zhi-Kang Xu","doi":"10.1021/acsbiomaterials.4c02117","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular trauma deprives one of the vision for high-quality life. Management of a traumatic cataract requires extensive surgical experience with a range of biomaterials and biomedical devices including intraocular lenses (IOLs), capsular tension rings (CTRs), prosthetic iris (PSI) implants, bandage contact lenses (BCLs), artificial corneas (ACs), and surgical sutures. Numerous demands, involving biocompatibility, cell toxicity, processability, mechanical strength, toughness/flexibility, transparency/opacity, hydrophilicity/hydrophobicity, and stability/biodegradability, are widely considered for fabricating these biomaterials and devices. Furthermore, a multifunction including drug-release and photothermal therapy is also endearing to those biomaterials in IOLs, CTRs, BCLs, and surgical sutures for anti-inflammational and antibacterial characteristics during traumatic cataract treatments. More recently, 3D printing has been demonstrated to effectively fabricate PSI and ACs with complex shapes to meet the personal requirements of patients. We summarize the main principles and the recent achievements of these advances. We also suggest the potential directions for their future development and discuss the remaining challenges.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ocular trauma deprives one of the vision for high-quality life. Management of a traumatic cataract requires extensive surgical experience with a range of biomaterials and biomedical devices including intraocular lenses (IOLs), capsular tension rings (CTRs), prosthetic iris (PSI) implants, bandage contact lenses (BCLs), artificial corneas (ACs), and surgical sutures. Numerous demands, involving biocompatibility, cell toxicity, processability, mechanical strength, toughness/flexibility, transparency/opacity, hydrophilicity/hydrophobicity, and stability/biodegradability, are widely considered for fabricating these biomaterials and devices. Furthermore, a multifunction including drug-release and photothermal therapy is also endearing to those biomaterials in IOLs, CTRs, BCLs, and surgical sutures for anti-inflammational and antibacterial characteristics during traumatic cataract treatments. More recently, 3D printing has been demonstrated to effectively fabricate PSI and ACs with complex shapes to meet the personal requirements of patients. We summarize the main principles and the recent achievements of these advances. We also suggest the potential directions for their future development and discuss the remaining challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Agency, Consent and Loyalty: Michal daughter of Saul, and Royal Women in Middle Irish Literature
IF 0 PeritiaPub Date : 2022-01-01 DOI: 10.1484/j.perit.5.131896
Elizabeth Boyle
The Nameless Daughter of Saul
IF 0 2区 哲学ZEITSCHRIFT FUR DIE ALTTESTAMENTLICHE WISSENSCHAFTPub Date : 2023-11-09 DOI: 10.1515/zaw-2023-4001
Jeremy M. Hutton
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
A Novel High-Strength Dental Resin Composite Based on BaSi2O2N2 for Caries Restoration. Adhesive and Antioxidant Hydrogel with Glucose/ROS Dual-Responsive Drug Release for Diabetic Oral Mucosal Wound Healing. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. Bacteria-Responsive Drug Delivery System Utilizing Carboxymethyl Cellulose-Functionalized Metal-Organic Framework for Enhanced Antibacterial Efficacy. Establishing a Bioink Assessment Protocol: Gelma and Collagen in the Bioprinting of a Potential In Vitro Intestinal Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1