Quantification of Flavors, Volatile Organic Compounds, Tobacco Markers, and Tobacco-Specific Nitrosamines in Heated Tobacco Products and Their Mainstream Aerosol.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2025-03-20 DOI:10.1021/acs.chemrestox.5c00005
Saria Hoshino, Kazushi Noro, Takashi Amagai
{"title":"Quantification of Flavors, Volatile Organic Compounds, Tobacco Markers, and Tobacco-Specific Nitrosamines in Heated Tobacco Products and Their Mainstream Aerosol.","authors":"Saria Hoshino, Kazushi Noro, Takashi Amagai","doi":"10.1021/acs.chemrestox.5c00005","DOIUrl":null,"url":null,"abstract":"<p><p>As an alternative to cigarettes, the sales of heated tobacco products (HTPs) have increased in the Japanese market. This may contribute to improving a smoker's health because the levels of most toxic compounds─such as tobacco-specific nitrosamines (TSNAs) and volatile organic compounds (VOCs)─in the mainstream of HTPs are lower than those in cigarettes. However, the risks associated with the flavors that provide attractive tastes to HTPs remain unknown. We demonstrated that compared with cigarettes, HTPs reduce the health risks associated with VOCs and TSNAs while achieving comparable nicotine and flavor levels. The VOC and TSNA concentrations in the mainstream aerosol of HTPs were 0.0039 (benzene)-0.53 (acetaldehyde) times lower than those in cigarettes. Using HTPs may still pose adverse noncarcinogenic and carcinogenic effects on human health, as indicated by hazard quotients >1 for acrolein and acetaldehyde, margins of exposure <100 for (<i>R</i>)-(+)-limonene, and cancer risks >1.0 × 10<sup>-6</sup> for acetaldehyde. Additionally, the exhalation of mainstream aerosol may increase the indoor acrolein concentration to 0.069 μg m<sup>-3</sup>, exceeding the reference concentration for acrolein (0.02 μg m<sup>-3</sup>). Therefore, reducing acrolein concentrations is an effective measure for improving the safety of HTP use.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.5c00005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

As an alternative to cigarettes, the sales of heated tobacco products (HTPs) have increased in the Japanese market. This may contribute to improving a smoker's health because the levels of most toxic compounds─such as tobacco-specific nitrosamines (TSNAs) and volatile organic compounds (VOCs)─in the mainstream of HTPs are lower than those in cigarettes. However, the risks associated with the flavors that provide attractive tastes to HTPs remain unknown. We demonstrated that compared with cigarettes, HTPs reduce the health risks associated with VOCs and TSNAs while achieving comparable nicotine and flavor levels. The VOC and TSNA concentrations in the mainstream aerosol of HTPs were 0.0039 (benzene)-0.53 (acetaldehyde) times lower than those in cigarettes. Using HTPs may still pose adverse noncarcinogenic and carcinogenic effects on human health, as indicated by hazard quotients >1 for acrolein and acetaldehyde, margins of exposure <100 for (R)-(+)-limonene, and cancer risks >1.0 × 10-6 for acetaldehyde. Additionally, the exhalation of mainstream aerosol may increase the indoor acrolein concentration to 0.069 μg m-3, exceeding the reference concentration for acrolein (0.02 μg m-3). Therefore, reducing acrolein concentrations is an effective measure for improving the safety of HTP use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Quantification of Flavors, Volatile Organic Compounds, Tobacco Markers, and Tobacco-Specific Nitrosamines in Heated Tobacco Products and Their Mainstream Aerosol. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Systematic Investigation of CYP3A4 Using Side-by-Side Comparisons of Apo, Active Site, and Allosteric-Bound States. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1