Multitask learning model for predicting non-coding RNA-disease associations: Incorporating local and global context.

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2025-03-18 DOI:10.1016/j.ymeth.2025.03.009
Xiaohan Li, Guohua Wang, Dan Li, Yang Li
{"title":"Multitask learning model for predicting non-coding RNA-disease associations: Incorporating local and global context.","authors":"Xiaohan Li, Guohua Wang, Dan Li, Yang Li","doi":"10.1016/j.ymeth.2025.03.009","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are crucial non-coding RNAs involved in various diseases. Understanding these interactions is vital for advancing diagnostic, preventive, and therapeutic strategies. Existing computational methods often address lncRNA-miRNA-disease associations as isolated tasks, resulting in sparse connections and limited generalizability. Additionally, these ncRNA-disease relationships involve higher-order topological information that is frequently overlooked. To address these challenges, we propose the MTL-NRDA model, which employs a multi-task learning framework to simultaneously predict lncRNA-disease associations, miRNA-disease associations, and lncRNA-miRNA interactions. The model integrates multi-source information through a heterogeneous network encompassing lncRNAs, miRNAs, and disease association networks as well as various similarity networks. Node embeddings are optimized by combining local and global contexts, and local features are aggregated using higher-order graph convolutional networks (HOGCN) to capture ncRNA-disease associations, while global features are extracted via a transformer encoder, effectively handling long-range dependencies. MTL-NRDA uses independent bilinear output layers for each task and dynamically adjusts the loss weights to calculate task-specific association probabilities. Experiments on two independent datasets show that MTL-NRDA outperforms existing models. Ablation studies confirmed the effectiveness of the model components and multi-task strategy, whereas hyperparameter tuning further improved the performance. Case studies on breast and liver cancers demonstrated the practical applicability of the model.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":"10-21"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2025.03.009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are crucial non-coding RNAs involved in various diseases. Understanding these interactions is vital for advancing diagnostic, preventive, and therapeutic strategies. Existing computational methods often address lncRNA-miRNA-disease associations as isolated tasks, resulting in sparse connections and limited generalizability. Additionally, these ncRNA-disease relationships involve higher-order topological information that is frequently overlooked. To address these challenges, we propose the MTL-NRDA model, which employs a multi-task learning framework to simultaneously predict lncRNA-disease associations, miRNA-disease associations, and lncRNA-miRNA interactions. The model integrates multi-source information through a heterogeneous network encompassing lncRNAs, miRNAs, and disease association networks as well as various similarity networks. Node embeddings are optimized by combining local and global contexts, and local features are aggregated using higher-order graph convolutional networks (HOGCN) to capture ncRNA-disease associations, while global features are extracted via a transformer encoder, effectively handling long-range dependencies. MTL-NRDA uses independent bilinear output layers for each task and dynamically adjusts the loss weights to calculate task-specific association probabilities. Experiments on two independent datasets show that MTL-NRDA outperforms existing models. Ablation studies confirmed the effectiveness of the model components and multi-task strategy, whereas hyperparameter tuning further improved the performance. Case studies on breast and liver cancers demonstrated the practical applicability of the model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
DriverMEDS: Cancer driver gene identification using mutual exclusivity from embeded features and driver mutation scoring. Multitask learning model for predicting non-coding RNA-disease associations: Incorporating local and global context. Iontophoresis impact on corneal properties using an ex vivo bovine eye model Domain alignment method based on masked variational autoencoder for predicting patient anticancer drug response Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1