Yu Wang, Yuting Wang, Huabin Gao, Lin Chen, Shuai Zheng, Yongyu Chen, Huijuan Shi, Anjia Han
{"title":"Ezetimibe mediated RPS6KA2 inhibits colorectal cancer proliferation via PCSK9/MAPK signaling pathway.","authors":"Yu Wang, Yuting Wang, Huabin Gao, Lin Chen, Shuai Zheng, Yongyu Chen, Huijuan Shi, Anjia Han","doi":"10.1016/j.ctarc.2025.100899","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effect and molecular mechanism of ezetimibe on colorectal cancer (CRC), our study found that ezetimibe significantly inhibited the proliferation and progression of CRC. Further study showed that RPS6KA2 might be the target gene of ezetimibe treatment on CRC. RPS6KA2 expression was significantly lower in human CRC tissue samples and associated with T classification and vascular invasion of tumor cells. RPS6KA2 inhibited proliferation, migration, and invasion of CRC cells. The underlying mechanisms indicated that interaction between RPS6KA2 and PCSK9 was observed within the cytoplasmic compartment of CRC cells. RPS6KA2 suppressed PCSK9 and MAPK signaling pathway in CRC cells. BI-D1780 which is an inhibitor of RPS6KA2 increased PCSK9 and MAPK signaling pathway related proteins expression in SW620 cells. However, an inhibitor or stimulator of MAPK did not affect RPS6KA2 and PCSK9 expression, respectively. In vivo, CRC cells with RPS6KA2 or PCSK9 overexpression could inhibit or promote tumor growth and metastasis, respectively. PCSK9 promoted proliferation, migration, and invasion of CRC cells. PCSK9 expression was higher in human CRC samples and associated with N classification and TNM stage of CRC. In conclusion, our study firstly suggests that ezetimibe suppresses CRC progression by upregulating RPS6KA2 while downregulating PCSK9/MAPK signaling pathway.</p>","PeriodicalId":9507,"journal":{"name":"Cancer treatment and research communications","volume":"43 ","pages":"100899"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ctarc.2025.100899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effect and molecular mechanism of ezetimibe on colorectal cancer (CRC), our study found that ezetimibe significantly inhibited the proliferation and progression of CRC. Further study showed that RPS6KA2 might be the target gene of ezetimibe treatment on CRC. RPS6KA2 expression was significantly lower in human CRC tissue samples and associated with T classification and vascular invasion of tumor cells. RPS6KA2 inhibited proliferation, migration, and invasion of CRC cells. The underlying mechanisms indicated that interaction between RPS6KA2 and PCSK9 was observed within the cytoplasmic compartment of CRC cells. RPS6KA2 suppressed PCSK9 and MAPK signaling pathway in CRC cells. BI-D1780 which is an inhibitor of RPS6KA2 increased PCSK9 and MAPK signaling pathway related proteins expression in SW620 cells. However, an inhibitor or stimulator of MAPK did not affect RPS6KA2 and PCSK9 expression, respectively. In vivo, CRC cells with RPS6KA2 or PCSK9 overexpression could inhibit or promote tumor growth and metastasis, respectively. PCSK9 promoted proliferation, migration, and invasion of CRC cells. PCSK9 expression was higher in human CRC samples and associated with N classification and TNM stage of CRC. In conclusion, our study firstly suggests that ezetimibe suppresses CRC progression by upregulating RPS6KA2 while downregulating PCSK9/MAPK signaling pathway.
期刊介绍:
Cancer Treatment and Research Communications is an international peer-reviewed publication dedicated to providing comprehensive basic, translational, and clinical oncology research. The journal is devoted to articles on detection, diagnosis, prevention, policy, and treatment of cancer and provides a global forum for the nurturing and development of future generations of oncology scientists. Cancer Treatment and Research Communications publishes comprehensive reviews and original studies describing various aspects of basic through clinical research of all tumor types. The journal also accepts clinical studies in oncology, with an emphasis on prospective early phase clinical trials. Specific areas of interest include basic, translational, and clinical research and mechanistic approaches; cancer biology; molecular carcinogenesis; genetics and genomics; stem cell and developmental biology; immunology; molecular and cellular oncology; systems biology; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; cancer policy; and integration of various approaches. Our mission is to be the premier source of relevant information through promoting excellence in research and facilitating the timely translation of that science to health care and clinical practice.