Abnormal DNA methylation of EBF1 regulates adipogenesis in chicken.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-20 DOI:10.1186/s12864-025-11464-6
Xiaohuan Chao, Lijin Guo, Meiling Hu, Mao Ye, Zhexia Fan, Kang Luan, Jiahao Chen, Chunlei Zhang, Manqing Liu, Bo Zhou, Xiquan Zhang, Zhenhui Li, Qingbin Luo
{"title":"Abnormal DNA methylation of EBF1 regulates adipogenesis in chicken.","authors":"Xiaohuan Chao, Lijin Guo, Meiling Hu, Mao Ye, Zhexia Fan, Kang Luan, Jiahao Chen, Chunlei Zhang, Manqing Liu, Bo Zhou, Xiquan Zhang, Zhenhui Li, Qingbin Luo","doi":"10.1186/s12864-025-11464-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA methylation influences gene expression and is involved in numerous biological processes, including fat production. It is involved in lipid generation in numerous animal species, including poultry. However, the effect of DNA methylation on adipogenesis in chickens remains unclear.</p><p><strong>Results: </strong>A total of 12 100-day-old chickens were divided into high and low-fat groups based on their abdominal fat ratios. Subsequently, genome-wide bisulfite sequencing (WGBS) was performed on their abdominal fat, and 1877 differentially methylated region (DMR) genes were identified, among which SLC45A3, EBF1, PLA2G15, and ACAD9 were associated with lipid metabolism. Interestingly, EBF1 showed a lower level of DNA methylation and higher mRNA expression in the low-fat group, as determined by comprehensive RNA-seq analysis. Cellular verification showed that EBF1 expression was upregulated by 5-azacytidine (5-Aza) and downregulated by betaine. EBF1 facilitated the differentiation of immortalized chicken preadipocyte 1 (ICP-1) through the PPAR-γ pathway, thereby affecting chicken adipogenesis.</p><p><strong>Conclusion: </strong>A combination of WGBS and RNA-seq analyses revealed 48 DMGs in the abdominal fat tissue of chickens. Notably, the DNA methylation status of EBF1 was inversely related to its mRNA expression. Mechanistically, DNA methylation regulates EBF1 expression, which in turn mediates the differentiation of ICP-1 through the PPARγ pathway. This study provides a theoretical framework for investigating the effects of DNA methylation on adipogenesis in chickens.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"275"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11464-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: DNA methylation influences gene expression and is involved in numerous biological processes, including fat production. It is involved in lipid generation in numerous animal species, including poultry. However, the effect of DNA methylation on adipogenesis in chickens remains unclear.

Results: A total of 12 100-day-old chickens were divided into high and low-fat groups based on their abdominal fat ratios. Subsequently, genome-wide bisulfite sequencing (WGBS) was performed on their abdominal fat, and 1877 differentially methylated region (DMR) genes were identified, among which SLC45A3, EBF1, PLA2G15, and ACAD9 were associated with lipid metabolism. Interestingly, EBF1 showed a lower level of DNA methylation and higher mRNA expression in the low-fat group, as determined by comprehensive RNA-seq analysis. Cellular verification showed that EBF1 expression was upregulated by 5-azacytidine (5-Aza) and downregulated by betaine. EBF1 facilitated the differentiation of immortalized chicken preadipocyte 1 (ICP-1) through the PPAR-γ pathway, thereby affecting chicken adipogenesis.

Conclusion: A combination of WGBS and RNA-seq analyses revealed 48 DMGs in the abdominal fat tissue of chickens. Notably, the DNA methylation status of EBF1 was inversely related to its mRNA expression. Mechanistically, DNA methylation regulates EBF1 expression, which in turn mediates the differentiation of ICP-1 through the PPARγ pathway. This study provides a theoretical framework for investigating the effects of DNA methylation on adipogenesis in chickens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Seminal plasma proteomics of asymptomatic COVID-19 patients reveals disruption of male reproductive function. The rumen microbiome and its metabolome together with the host metabolome regulate the growth performance of crossbred cattle. Altered structural and transporter-related gene expression patterns in the placenta play a role in fetal demise during Porcine reproductive and respiratory syndrome virus infection. Genome-wide association study identifies elite alleles of FLA2 and FLA9 controlling flag leaf angle in rice. Whole-genome bisulfite sequencing of X and Y sperm in Holstein bulls reveals differences in autosomal methylation status.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1