{"title":"Conquering PROTAC molecular design and drugability.","authors":"Ritesh P Bhole, Sonali Labhade, Shilendra S Gurav","doi":"10.1080/17576180.2025.2481021","DOIUrl":null,"url":null,"abstract":"<p><p>PROTACs are reshaping drug discovery by enabling targeted protein degradation, overcoming the limitations of traditional inhibitors, and addressing previously \"undruggable\" proteins. The present perspective explores advancements in PROTAC molecular design, focusing on ligand discovery, E3 ligase recruitment, and ternary complex optimization. Integrating AI-driven modeling, FBDD, and SBDD accelerates PROTAC development. In contrast, emerging innovations, such as PHOTACs, hypoxia-responsive systems, and Ab-PROTACs, enhance precision and reduce systemic toxicity. Clinical successes, including ARV-110 for castration-resistant prostate cancer and ARV-471 for breast cancer, exemplify their ability to overcome resistance and provide durable effects. PROTACs are expanding into neurodegenerative diseases and rare conditions, highlighting their versatility. By addressing challenges in pharmacokinetics, safety, and scalability, PROTACs are poised to revolutionize precision medicine. This article presents a forward-looking perspective on conquering the molecular design and drugability of PROTACs, paving the path for transformative therapies.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1-16"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2481021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
PROTACs are reshaping drug discovery by enabling targeted protein degradation, overcoming the limitations of traditional inhibitors, and addressing previously "undruggable" proteins. The present perspective explores advancements in PROTAC molecular design, focusing on ligand discovery, E3 ligase recruitment, and ternary complex optimization. Integrating AI-driven modeling, FBDD, and SBDD accelerates PROTAC development. In contrast, emerging innovations, such as PHOTACs, hypoxia-responsive systems, and Ab-PROTACs, enhance precision and reduce systemic toxicity. Clinical successes, including ARV-110 for castration-resistant prostate cancer and ARV-471 for breast cancer, exemplify their ability to overcome resistance and provide durable effects. PROTACs are expanding into neurodegenerative diseases and rare conditions, highlighting their versatility. By addressing challenges in pharmacokinetics, safety, and scalability, PROTACs are poised to revolutionize precision medicine. This article presents a forward-looking perspective on conquering the molecular design and drugability of PROTACs, paving the path for transformative therapies.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.