A machine learning model based on placental magnetic resonance imaging and clinical factors to predict fetal growth restriction.

IF 2.8 2区 医学 Q1 OBSTETRICS & GYNECOLOGY BMC Pregnancy and Childbirth Pub Date : 2025-03-20 DOI:10.1186/s12884-025-07450-1
Jida Wang, Zhuying Chen, Hongxi Zhang, Weikang Li, Kui Li, Meixiang Deng, Yu Zou
{"title":"A machine learning model based on placental magnetic resonance imaging and clinical factors to predict fetal growth restriction.","authors":"Jida Wang, Zhuying Chen, Hongxi Zhang, Weikang Li, Kui Li, Meixiang Deng, Yu Zou","doi":"10.1186/s12884-025-07450-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To create a placental radiomics-clinical machine learning model to predict FGR.</p><p><strong>Materials and methods: </strong>Retrospectively analyzed placental MRI and clinical data of 110 FGR cases and 158 healthy controls at 28-37 weeks of gestation from two campuses of ZWH. 227 cases from Hubin campus were randomly divided into training (n = 182) and internal testing set (n = 45). 41 cases from Xiaoshan campus were included in external testing set. Placental MRI features were extracted from sagittal T2WI. Mann-Whitney U test, redundancy analysis, and LASSO were used to identify the radiomics signature, and the best-performing radiomics model was constructed by comparing eight machine learning algorithms. Clinical factors determined by univariate and multivariate analyses. A united model and nomogram combining the radiomics Rad-score and clinical factors were established. The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis.</p><p><strong>Results: </strong>Of 1561 radiomics features, 10 strongly correlated with FGR were selected. The radiomics model using logistic regression performed best compared eight algorithms. 5 important clinical features identified by analysis. The united model demonstrated a good predictive performance in the training, internal testing and external testing sets, with AUC 0.941 (95% CI, 0.0.904-0.977), 0.899 (95% CI, 0.789-1) and 0.861 (95% CI 0.725-0.998), prediction accuracies 0.885, 0.844 and 0.805, precisions 0.871, 0.789 and 0.867, recalls 0.836, 0.833 and 0.684, and F1 scores 0.853, 0.811 and 0.765, respectively. The calibration and decision curves of the united model also showed good performance. Nomogram confirmed clinical applicability of the model.</p><p><strong>Conclusions: </strong>The proposed placental radiomics-clinical machine learning model is simple yet effective to predict FGR.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"25 1","pages":"325"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-025-07450-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To create a placental radiomics-clinical machine learning model to predict FGR.

Materials and methods: Retrospectively analyzed placental MRI and clinical data of 110 FGR cases and 158 healthy controls at 28-37 weeks of gestation from two campuses of ZWH. 227 cases from Hubin campus were randomly divided into training (n = 182) and internal testing set (n = 45). 41 cases from Xiaoshan campus were included in external testing set. Placental MRI features were extracted from sagittal T2WI. Mann-Whitney U test, redundancy analysis, and LASSO were used to identify the radiomics signature, and the best-performing radiomics model was constructed by comparing eight machine learning algorithms. Clinical factors determined by univariate and multivariate analyses. A united model and nomogram combining the radiomics Rad-score and clinical factors were established. The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis.

Results: Of 1561 radiomics features, 10 strongly correlated with FGR were selected. The radiomics model using logistic regression performed best compared eight algorithms. 5 important clinical features identified by analysis. The united model demonstrated a good predictive performance in the training, internal testing and external testing sets, with AUC 0.941 (95% CI, 0.0.904-0.977), 0.899 (95% CI, 0.789-1) and 0.861 (95% CI 0.725-0.998), prediction accuracies 0.885, 0.844 and 0.805, precisions 0.871, 0.789 and 0.867, recalls 0.836, 0.833 and 0.684, and F1 scores 0.853, 0.811 and 0.765, respectively. The calibration and decision curves of the united model also showed good performance. Nomogram confirmed clinical applicability of the model.

Conclusions: The proposed placental radiomics-clinical machine learning model is simple yet effective to predict FGR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Pregnancy and Childbirth
BMC Pregnancy and Childbirth OBSTETRICS & GYNECOLOGY-
CiteScore
4.90
自引率
6.50%
发文量
845
审稿时长
3-8 weeks
期刊介绍: BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.
期刊最新文献
Lethal acantholytic epidermolysis bullosa- a report on the prenatal phenotype of two cases and a review of antenatal sonographic signs of congenital denuding skin diseases. A machine learning model based on placental magnetic resonance imaging and clinical factors to predict fetal growth restriction. Anemia in pregnant women: findings from Kuwait birth cohort study. Correction: Establishment and validation of a nomogram for predicting preterm birth in intrahepatic cholestasis during pregnancy: a retrospective study. Investigating the association of albuminuria with the incidence of preeclampsia and its predictive capabilities: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1