Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-20 DOI:10.1186/s12870-025-06343-x
Yanli Guo, Qingxiao Ren, Manman Song, Xiangxiang Zhang, Heping Wan, Fei Liu
{"title":"Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L.","authors":"Yanli Guo, Qingxiao Ren, Manman Song, Xiangxiang Zhang, Heping Wan, Fei Liu","doi":"10.1186/s12870-025-06343-x","DOIUrl":null,"url":null,"abstract":"<p><p>Brassica napus, an allotetraploid used as an oilseed crop, vegetable, or feed crop, possesses significant economic and medicinal value. Although the CHYR gene family has been functionally characterised in various aspects of plant growth, development, and stress responses, its systematic investigation in B. napus is lacking. In contrast to the seven CHYR genes (AtCHYR1-AtCHYR7) identified in Arabidopsis thaliana, nine CHYR orthologues were detected in B. rapa and B. oleracea, while 24 were found in B. napus. This discrepancy is consistent with the established triplication events that occurred during the Brassicaceae family evolution. Phylogenetic analysis indicated that the 24 CHYRs identified in B. napus could be categorised into three distinct groups. Among these, 24 BnCHYRs contained conserved domains, including the CHY-zinc finger, C3H2C3-type RING finger and zinc ribbon domains. Group III members featured an additional one to three hemerythrin domains in their N-terminal regions. Each BnCHYR group shared similar patterns in the distribution of conserved domains. Our results revealed that the selected eight BnCHYRs were up-regulated following heat treatment, exhibiting varying expression patterns in response to salt, cold, and drought stress during the seedling stage. Expression analysis revealed that several BnCHYRs were significantly induced by one or more abiotic stressors. BnA03.CHYR.1 was significantly induced by salt and heat stress and repressed by polyethylene glycol treatment. BnA03.CHYR.1 was localised in the nucleus and cytoplasm, and its overexpression in A. thaliana enhanced tolerance to salt stress. Our results provide a comprehensive analysis of the CHYR family in B. napus, elucidating the biological role of BnA03.CHYR.1 in adaptive responses of plants to salt stress.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"363"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06343-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Brassica napus, an allotetraploid used as an oilseed crop, vegetable, or feed crop, possesses significant economic and medicinal value. Although the CHYR gene family has been functionally characterised in various aspects of plant growth, development, and stress responses, its systematic investigation in B. napus is lacking. In contrast to the seven CHYR genes (AtCHYR1-AtCHYR7) identified in Arabidopsis thaliana, nine CHYR orthologues were detected in B. rapa and B. oleracea, while 24 were found in B. napus. This discrepancy is consistent with the established triplication events that occurred during the Brassicaceae family evolution. Phylogenetic analysis indicated that the 24 CHYRs identified in B. napus could be categorised into three distinct groups. Among these, 24 BnCHYRs contained conserved domains, including the CHY-zinc finger, C3H2C3-type RING finger and zinc ribbon domains. Group III members featured an additional one to three hemerythrin domains in their N-terminal regions. Each BnCHYR group shared similar patterns in the distribution of conserved domains. Our results revealed that the selected eight BnCHYRs were up-regulated following heat treatment, exhibiting varying expression patterns in response to salt, cold, and drought stress during the seedling stage. Expression analysis revealed that several BnCHYRs were significantly induced by one or more abiotic stressors. BnA03.CHYR.1 was significantly induced by salt and heat stress and repressed by polyethylene glycol treatment. BnA03.CHYR.1 was localised in the nucleus and cytoplasm, and its overexpression in A. thaliana enhanced tolerance to salt stress. Our results provide a comprehensive analysis of the CHYR family in B. napus, elucidating the biological role of BnA03.CHYR.1 in adaptive responses of plants to salt stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐胁迫下甘蓝型油菜CHYR基因家族的全基因组分析及BnA03.CHYR.1的功能验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L. Geographical variation and the role of climate and soil on phenotypic traits of Calamus rhabdocladus across provenances in China. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. Isolation, characterization and screening of phosphate (P) solubilizing actinomycetes and exploring its potency in finger millet (Eleusine coracana L.). Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1