Phylogenetic history and temperature adaptation contribute to structural and functional stability of proteins in marine mollusks.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-03-20 DOI:10.1038/s42003-025-07881-8
Xin-Lei Zhang, Ming-Ling Liao, Chao-Yi Ma, Lin-Xuan Ma, Qian-Wen Huang, Yun-Wei Dong
{"title":"Phylogenetic history and temperature adaptation contribute to structural and functional stability of proteins in marine mollusks.","authors":"Xin-Lei Zhang, Ming-Ling Liao, Chao-Yi Ma, Lin-Xuan Ma, Qian-Wen Huang, Yun-Wei Dong","doi":"10.1038/s42003-025-07881-8","DOIUrl":null,"url":null,"abstract":"<p><p>Teasing apart the influences of phylogenetic history from thermal adaptation is a focal challenge in understanding the factors driving change in protein stability. This study conducted comprehensive comparative analyses between the phylogenetic relationships and functional/structural stabilities at protein and mRNA levels of cytosolic malate dehydrogenase (cMDH) orthologs of 41 marine mollusks living at widely different environmental temperatures. At the protein level, a significant negative correlation between adaptation temperature and heat-induced movements of the cMDH backbone was found. The movement fluctuation of individual residue varied similarly among cMDH orthologs. At the mRNA level, the free energy that occurs during the formation of the ensemble of mRNA secondary structure was significantly positively correlated with adaptation temperature. The fraction of guanine and cytosine increased with adaptation temperature. The proportion of variance in adaptation temperature that can be explained by the thermal stability (R<sup>2</sup>) was decreased after phylogenetic generalized least squares but was almost significant at both protein and mRNA levels (P < 0.05). Those analyses reveal the phylogenetic influence on the thermal adaptation of species. Our findings indicated that multi-level analysis of orthologous proteins should be considered alongside phylogenetic history to permit the development of a more comprehensive understanding of protein thermal adaptation.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"461"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07881-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Teasing apart the influences of phylogenetic history from thermal adaptation is a focal challenge in understanding the factors driving change in protein stability. This study conducted comprehensive comparative analyses between the phylogenetic relationships and functional/structural stabilities at protein and mRNA levels of cytosolic malate dehydrogenase (cMDH) orthologs of 41 marine mollusks living at widely different environmental temperatures. At the protein level, a significant negative correlation between adaptation temperature and heat-induced movements of the cMDH backbone was found. The movement fluctuation of individual residue varied similarly among cMDH orthologs. At the mRNA level, the free energy that occurs during the formation of the ensemble of mRNA secondary structure was significantly positively correlated with adaptation temperature. The fraction of guanine and cytosine increased with adaptation temperature. The proportion of variance in adaptation temperature that can be explained by the thermal stability (R2) was decreased after phylogenetic generalized least squares but was almost significant at both protein and mRNA levels (P < 0.05). Those analyses reveal the phylogenetic influence on the thermal adaptation of species. Our findings indicated that multi-level analysis of orthologous proteins should be considered alongside phylogenetic history to permit the development of a more comprehensive understanding of protein thermal adaptation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Phylogenetic history and temperature adaptation contribute to structural and functional stability of proteins in marine mollusks. StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest. The emergence of moral alignment within human groups is facilitated by interbrain synchrony. Unusual traits shape the architecture of the Ig ancestor molecule. Vocal sequence diversity and length remain stable across ontogeny in a catarrhine monkey (Cercocebus atys).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1