Light scattering imaging modal expansion cytometry for label-free single-cell analysis with deep learning.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2025-03-15 DOI:10.1016/j.cmpb.2025.108726
Zhi Li, Xiaoyu Zhang, Guosheng Li, Jun Peng, Xuantao Su
{"title":"Light scattering imaging modal expansion cytometry for label-free single-cell analysis with deep learning.","authors":"Zhi Li, Xiaoyu Zhang, Guosheng Li, Jun Peng, Xuantao Su","doi":"10.1016/j.cmpb.2025.108726","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Single-cell imaging plays a key role in various fields, including drug development, disease diagnosis, and personalized medicine. To obtain multi-modal information from a single-cell image, especially for label-free cells, this study develops modal expansion cytometry for label-free single-cell analysis.</p><p><strong>Methods: </strong>The study utilizes a deep learning-based architecture to expand single-mode light scattering images into multi-modality images, including bright-field (non-fluorescent) and fluorescence images, for label-free single-cell analysis. By combining adversarial loss, L1 distance loss, and VGG perceptual loss, a new network optimization method is proposed. The effectiveness of this method is verified by experiments on simulated images, standard spheres of different sizes, and multiple cell types (such as cervical cancer and leukemia cells). Additionally, the capability of this method in single-cell analysis is assessed through multi-modal cell classification experiments, such as cervical cancer subtypes.</p><p><strong>Results: </strong>This is demonstrated by using both cervical cancer cells and leukemia cells. The expanded bright-field and fluorescence images derived from the light scattering images align closely with those obtained through conventional microscopy, showing a contour ratio near 1 for both the whole cell and its nucleus. Using machine learning, the subtyping of cervical cancer cells achieved 92.85 % accuracy with the modal expansion images, which represents an improvement of nearly 20 % over single-mode light scattering images.</p><p><strong>Conclusions: </strong>This study demonstrates the light scattering imaging modal expansion cytometry with deep learning has the capability to expand the single-mode light scattering image into the artificial multimodal images of label-free single cells, which not only provides the visualization of cells but also helps for the cell classification, showing great potential in the field of single-cell analysis such as cancer cell diagnosis.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"264 ","pages":"108726"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2025.108726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Single-cell imaging plays a key role in various fields, including drug development, disease diagnosis, and personalized medicine. To obtain multi-modal information from a single-cell image, especially for label-free cells, this study develops modal expansion cytometry for label-free single-cell analysis.

Methods: The study utilizes a deep learning-based architecture to expand single-mode light scattering images into multi-modality images, including bright-field (non-fluorescent) and fluorescence images, for label-free single-cell analysis. By combining adversarial loss, L1 distance loss, and VGG perceptual loss, a new network optimization method is proposed. The effectiveness of this method is verified by experiments on simulated images, standard spheres of different sizes, and multiple cell types (such as cervical cancer and leukemia cells). Additionally, the capability of this method in single-cell analysis is assessed through multi-modal cell classification experiments, such as cervical cancer subtypes.

Results: This is demonstrated by using both cervical cancer cells and leukemia cells. The expanded bright-field and fluorescence images derived from the light scattering images align closely with those obtained through conventional microscopy, showing a contour ratio near 1 for both the whole cell and its nucleus. Using machine learning, the subtyping of cervical cancer cells achieved 92.85 % accuracy with the modal expansion images, which represents an improvement of nearly 20 % over single-mode light scattering images.

Conclusions: This study demonstrates the light scattering imaging modal expansion cytometry with deep learning has the capability to expand the single-mode light scattering image into the artificial multimodal images of label-free single cells, which not only provides the visualization of cells but also helps for the cell classification, showing great potential in the field of single-cell analysis such as cancer cell diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Automated neuroradiological support systems for multiple cerebrovascular disease markers — A systematic review and meta-analysis The impact of training image quality with a novel protocol on artificial intelligence-based LGE-MRI image segmentation for potential atrial fibrillation management Light scattering imaging modal expansion cytometry for label-free single-cell analysis with deep learning. Linguistic-grammar profile of Polish patients with anorexia nervosa A study on brain tumor dynamics in two-dimensional irregular domain with variable-order time-fractional derivative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1