Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria.

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Critical reviews in food science and nutrition Pub Date : 2025-03-20 DOI:10.1080/10408398.2025.2479069
Sisi Chen, Keke Suo, Qiaozhen Kang, Jiaqing Zhu, Yanling Shi, Juanjuan Yi, Jike Lu
{"title":"Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria.","authors":"Sisi Chen, Keke Suo, Qiaozhen Kang, Jiaqing Zhu, Yanling Shi, Juanjuan Yi, Jike Lu","doi":"10.1080/10408398.2025.2479069","DOIUrl":null,"url":null,"abstract":"<p><p>Lactic acid bacteria (LAB), as key probiotic, play crucial roles in maintaining human health. However, their survival and functionality in diverse habitats depend on their ability to sense and respond to environmental stresses. Notably, active induction has emerged as a promising strategy for regulating the biological activity of LAB, potentially enhancing their health benefits. Therefore, this review summarizes the beneficial effects of active induction, including acid, bile, oxidation, ethanol, heat, cold, and radiation induction on the functional activities of LAB. In addition, omics methods, <i>in silico</i> analysis, and gene editing technologies have greatly facilitated the profound exploration of the stress regulatory network in LAB, thereby aiding the identification of active components and stress adaptors. Through these advancements, LAB provide health benefits by regulating stress-related genes and proteins, as well as inducing bioactive metabolite production. As a result, they could enhance stress tolerance, cross-protection, intestinal colonization, adhesion properties, and provide antialcohol and liver protection <i>in vitro</i> or <i>in vivo</i>. This study highlights the potential of active induction strategies in enhancing the functional role of LAB in food applications.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-16"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2479069","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lactic acid bacteria (LAB), as key probiotic, play crucial roles in maintaining human health. However, their survival and functionality in diverse habitats depend on their ability to sense and respond to environmental stresses. Notably, active induction has emerged as a promising strategy for regulating the biological activity of LAB, potentially enhancing their health benefits. Therefore, this review summarizes the beneficial effects of active induction, including acid, bile, oxidation, ethanol, heat, cold, and radiation induction on the functional activities of LAB. In addition, omics methods, in silico analysis, and gene editing technologies have greatly facilitated the profound exploration of the stress regulatory network in LAB, thereby aiding the identification of active components and stress adaptors. Through these advancements, LAB provide health benefits by regulating stress-related genes and proteins, as well as inducing bioactive metabolite production. As a result, they could enhance stress tolerance, cross-protection, intestinal colonization, adhesion properties, and provide antialcohol and liver protection in vitro or in vivo. This study highlights the potential of active induction strategies in enhancing the functional role of LAB in food applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
期刊最新文献
Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties. Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria. Colon health benefits of plant-derived exosome-like nanoparticles via modulating gut microbiota and immunity. The potential of plasma-activated water in safe and sustainable food production: a comprehensive review of recent advances and future trends. Unleashing the potential of biotechnological strategies for the sustainable production of microalgal polysaccharides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1