Large language models for automating clinical trial matching.

IF 2.1 3区 医学 Q2 UROLOGY & NEPHROLOGY Current Opinion in Urology Pub Date : 2025-03-21 DOI:10.1097/MOU.0000000000001281
Ethan Layne, Claire Olivas, Jacob Hershenhouse, Conner Ganjavi, Francesco Cei, Inderbir Gill, Giovanni E Cacciamani
{"title":"Large language models for automating clinical trial matching.","authors":"Ethan Layne, Claire Olivas, Jacob Hershenhouse, Conner Ganjavi, Francesco Cei, Inderbir Gill, Giovanni E Cacciamani","doi":"10.1097/MOU.0000000000001281","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The uses of generative artificial intelligence (GAI) technologies in medicine are expanding, with the use of large language models (LLMs) for matching patients to clinical trials of particular interest. This review provides an overview of the current ability of leveraging LLMs for clinical trial matching.</p><p><strong>Recent findings: </strong>This review article examines recent studies assessing the performance of LLMs in oncologic clinical trial matching. The research in this area has shown promising results when testing these system using artificially created datasets. In general, they looked at how LLMs can be used to match patient health records with clinical trial eligibility criteria. There is still a need for human oversight of the systems in their current state.</p><p><strong>Summary: </strong>Automated clinical trial matching can improve patient access and autonomy, reduce provider workload, and increase trial enrollment. However, it may potentially create a feeling of \"false hope\" for patients, can be difficult to navigate, and still requires human oversight. Providers may face a learning curve, while institutions must address data privacy concerns and ensure seamless EMR/EHR integration. Given this, additional studies are needed to ensure safety and efficacy of LLM-based clinical trial matching in oncology.</p>","PeriodicalId":11093,"journal":{"name":"Current Opinion in Urology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOU.0000000000001281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: The uses of generative artificial intelligence (GAI) technologies in medicine are expanding, with the use of large language models (LLMs) for matching patients to clinical trials of particular interest. This review provides an overview of the current ability of leveraging LLMs for clinical trial matching.

Recent findings: This review article examines recent studies assessing the performance of LLMs in oncologic clinical trial matching. The research in this area has shown promising results when testing these system using artificially created datasets. In general, they looked at how LLMs can be used to match patient health records with clinical trial eligibility criteria. There is still a need for human oversight of the systems in their current state.

Summary: Automated clinical trial matching can improve patient access and autonomy, reduce provider workload, and increase trial enrollment. However, it may potentially create a feeling of "false hope" for patients, can be difficult to navigate, and still requires human oversight. Providers may face a learning curve, while institutions must address data privacy concerns and ensure seamless EMR/EHR integration. Given this, additional studies are needed to ensure safety and efficacy of LLM-based clinical trial matching in oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Urology
Current Opinion in Urology 医学-泌尿学与肾脏学
CiteScore
5.00
自引率
4.00%
发文量
140
审稿时长
6-12 weeks
期刊介绍: ​​​​​​​​Current Opinion in Urology delivers a broad-based perspective on the most recent and most exciting developments in urology from across the world. Published bimonthly and featuring ten key topics – including focuses on prostate cancer, bladder cancer and minimally invasive urology – the journal’s renowned team of guest editors ensure a balanced, expert assessment of the recently published literature in each respective field with insightful editorials and on-the-mark invited reviews.
期刊最新文献
Large language models for automating clinical trial matching. The advance of artificial intelligence in outpatient urology: current applications and future directions. Ethical aspects of artificial intelligence: what urologists need to know. Generative artificial intelligence powered chatbots in urology. Integration of novel artificial intelligence tools in pediatric urologic practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1