Tong Lu, Peter Kochunov, Chixiang Chen, Hsin-Hsiung Huang, L Elliot Hong, Shuo Chen
{"title":"A New Multiple Imputation Method for High-Dimensional Neuroimaging Data.","authors":"Tong Lu, Peter Kochunov, Chixiang Chen, Hsin-Hsiung Huang, L Elliot Hong, Shuo Chen","doi":"10.1002/hbm.70161","DOIUrl":null,"url":null,"abstract":"<p><p>Missing data are a prevalent challenge in neuroimaging, with significant implications for downstream statistical analysis. Neglecting this issue can introduce bias and lead to erroneous inferential conclusions, making it crucial to employ appropriate statistical methods for handling missing data. Although the multiple imputation is a widely used technique, its application in neuroimaging is severely hindered by the high dimensionality of neuroimaging data, and the substantial computational demands. To tackle the critical computational challenges, we propose a novel approach, High dimensional Multiple Imputation (HIMA), based on Bayesian models specifically designed for large-scale neuroimaging datasets. HIMA introduces a new computational strategy to sample large covariance matrices based on a robustly estimated posterior mode, significantly improving both computational efficiency and numerical stability. To assess the effectiveness of HIMA, we conducted extensive simulation studies and real-data analysis from a Schizophrenia brain imaging dataset with around 1000 voxels. HIMA showcases a remarkable reduction of computational burden, for example, 1 hour by HIMA versus 800 hours by classic multiple imputation packages. HIMA also demonstrates improved precision and stability of imputed data.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":"e70161"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70161","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Missing data are a prevalent challenge in neuroimaging, with significant implications for downstream statistical analysis. Neglecting this issue can introduce bias and lead to erroneous inferential conclusions, making it crucial to employ appropriate statistical methods for handling missing data. Although the multiple imputation is a widely used technique, its application in neuroimaging is severely hindered by the high dimensionality of neuroimaging data, and the substantial computational demands. To tackle the critical computational challenges, we propose a novel approach, High dimensional Multiple Imputation (HIMA), based on Bayesian models specifically designed for large-scale neuroimaging datasets. HIMA introduces a new computational strategy to sample large covariance matrices based on a robustly estimated posterior mode, significantly improving both computational efficiency and numerical stability. To assess the effectiveness of HIMA, we conducted extensive simulation studies and real-data analysis from a Schizophrenia brain imaging dataset with around 1000 voxels. HIMA showcases a remarkable reduction of computational burden, for example, 1 hour by HIMA versus 800 hours by classic multiple imputation packages. HIMA also demonstrates improved precision and stability of imputed data.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.