Ethan S Lindgren, Rongshan Yan, Yien-Ming Kuo, Qi Gao, Livia de Souza Goncalves, Feeling Y Chen, Matilda F Chan, Alan S Verkman, Onur Cil, Neel D Pasricha
{"title":"Lysophosphatidic acid receptor 3 (LPAR3) regulates ocular surface chloride transport via calcium signaling.","authors":"Ethan S Lindgren, Rongshan Yan, Yien-Ming Kuo, Qi Gao, Livia de Souza Goncalves, Feeling Y Chen, Matilda F Chan, Alan S Verkman, Onur Cil, Neel D Pasricha","doi":"10.1016/j.exer.2025.110346","DOIUrl":null,"url":null,"abstract":"<p><p>Dry eye is a multifactorial disease associated with impaired tear film homeostasis, damaging the ocular surface epithelium. Lysophosphatidic acid receptors (LPARs) are G-protein coupled receptors involved in Ca<sup>2+</sup> and cAMP signaling via PLC and adenylyl cyclase activation. LPAR activation is involved in cell proliferation and wound healing in human corneal epithelial cells (HCECs) and in neuropathic pain. This study investigates the expression and functions of LPARs in ocular surface epithelial cells. Functional measurements of ocular surface potential difference (OSPD) were done in mice with topically applied, selective LPAR modulators. LPAR3 immunostaining was performed in mouse and human cornea and conjunctiva, and mouse lacrimal gland. LPAR-induced Ca<sup>2+</sup> signaling was studied in primary and immortalized HCECs. The general LPAR agonist, linoleoyl LPA, and the LPAR3 selective agonist, 2S-OMPT, stimulated ocular surface Cl<sup>-</sup> secretion via Ca<sup>2+</sup>-activated Cl<sup>-</sup> channels (CaCCs). LPAR3 was expressed in the corneal and conjunctival epithelia of mice and humans, as well as in mouse lacrimal gland. Activation of LPAR and LPAR3 in HCECs transiently elevated intracellular Ca<sup>2+</sup> through the Gq/PLC signaling pathway. LPAR3 agonists may potentially have therapeutic efficacy in ocular surface diseases, including dry eye disease.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110346"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110346","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dry eye is a multifactorial disease associated with impaired tear film homeostasis, damaging the ocular surface epithelium. Lysophosphatidic acid receptors (LPARs) are G-protein coupled receptors involved in Ca2+ and cAMP signaling via PLC and adenylyl cyclase activation. LPAR activation is involved in cell proliferation and wound healing in human corneal epithelial cells (HCECs) and in neuropathic pain. This study investigates the expression and functions of LPARs in ocular surface epithelial cells. Functional measurements of ocular surface potential difference (OSPD) were done in mice with topically applied, selective LPAR modulators. LPAR3 immunostaining was performed in mouse and human cornea and conjunctiva, and mouse lacrimal gland. LPAR-induced Ca2+ signaling was studied in primary and immortalized HCECs. The general LPAR agonist, linoleoyl LPA, and the LPAR3 selective agonist, 2S-OMPT, stimulated ocular surface Cl- secretion via Ca2+-activated Cl- channels (CaCCs). LPAR3 was expressed in the corneal and conjunctival epithelia of mice and humans, as well as in mouse lacrimal gland. Activation of LPAR and LPAR3 in HCECs transiently elevated intracellular Ca2+ through the Gq/PLC signaling pathway. LPAR3 agonists may potentially have therapeutic efficacy in ocular surface diseases, including dry eye disease.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.