EEC-GIFT: a fairness-aware machine learning framework for lung cancer screening eligibility using real-world data.

IF 3.4 Q2 ONCOLOGY JNCI Cancer Spectrum Pub Date : 2025-03-20 DOI:10.1093/jncics/pkaf030
Piyawan Conahan, Lary A Robinson, Trung Le, Gilmer Valdes, Matthew B Schabath, Margaret M Byrne, Lee Green, Issam El Naqa, Yi Luo
{"title":"EEC-GIFT: a fairness-aware machine learning framework for lung cancer screening eligibility using real-world data.","authors":"Piyawan Conahan, Lary A Robinson, Trung Le, Gilmer Valdes, Matthew B Schabath, Margaret M Byrne, Lee Green, Issam El Naqa, Yi Luo","doi":"10.1093/jncics/pkaf030","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We use real-world data to develop a lung cancer screening (LCS) eligibility mechanism that is both accurate and free from racial bias.</p><p><strong>Methods: </strong>Our data came from the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial. We built a systematic fairness-aware machine learning framework by integrating a Group and Intersectional Fairness and Threshold (GIFT) strategy with an easy ensemble classifier- (EEC-) or logistic regression- (LR-) based model. The best LCS eligibility mechanism EEC-GIFT* and LR-GIFT* were applied to the testing dataset and their performances were compared to the 2021 US Preventive Services Task Force (USPSTF) criteria and PLCOM2012 model. The equal opportunity difference (EOD) of developing lung cancer between Black and White smokers was used to evaluate mechanism fairness.</p><p><strong>Results: </strong>The fairness of LR-GIFT* or EEC-GIFT* during training was notably greater than that of the LR or EEC models without greatly reducing their accuracy. During testing, the EEC-GIFT* (85.16% vs 78.08%, P < .001) and LR-GIFT* (85.98% vs 78.08%, P < .001) models significantly improved sensitivity without sacrificing specificity compared to the 2021 USPSTF criteria. The EEC-GIFT* (0.785 vs 0.788, P = .28) and LR-GIFT* (0.785 vs 0.788, P = .30) showed similar area under receiver operating characteristic curve (AUC) values compared to the PLCOM2012 model. While the average EODs between Blacks and Whites were significant for the 2021 USPSTF criteria (0.0673, P < .001), PLCOM2012 (0.0566, P < .001), and LR-GIFT* (0.0081, P < .001), the EEC-GIFT* model was unbiased (0.0034, P = .07).</p><p><strong>Conclusion: </strong>Our EEC-GIFT* LCS eligibility mechanism can significantly mitigate racial biases in eligibility determination without compromising its predictive performance.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkaf030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We use real-world data to develop a lung cancer screening (LCS) eligibility mechanism that is both accurate and free from racial bias.

Methods: Our data came from the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial. We built a systematic fairness-aware machine learning framework by integrating a Group and Intersectional Fairness and Threshold (GIFT) strategy with an easy ensemble classifier- (EEC-) or logistic regression- (LR-) based model. The best LCS eligibility mechanism EEC-GIFT* and LR-GIFT* were applied to the testing dataset and their performances were compared to the 2021 US Preventive Services Task Force (USPSTF) criteria and PLCOM2012 model. The equal opportunity difference (EOD) of developing lung cancer between Black and White smokers was used to evaluate mechanism fairness.

Results: The fairness of LR-GIFT* or EEC-GIFT* during training was notably greater than that of the LR or EEC models without greatly reducing their accuracy. During testing, the EEC-GIFT* (85.16% vs 78.08%, P < .001) and LR-GIFT* (85.98% vs 78.08%, P < .001) models significantly improved sensitivity without sacrificing specificity compared to the 2021 USPSTF criteria. The EEC-GIFT* (0.785 vs 0.788, P = .28) and LR-GIFT* (0.785 vs 0.788, P = .30) showed similar area under receiver operating characteristic curve (AUC) values compared to the PLCOM2012 model. While the average EODs between Blacks and Whites were significant for the 2021 USPSTF criteria (0.0673, P < .001), PLCOM2012 (0.0566, P < .001), and LR-GIFT* (0.0081, P < .001), the EEC-GIFT* model was unbiased (0.0034, P = .07).

Conclusion: Our EEC-GIFT* LCS eligibility mechanism can significantly mitigate racial biases in eligibility determination without compromising its predictive performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JNCI Cancer Spectrum
JNCI Cancer Spectrum Medicine-Oncology
CiteScore
7.70
自引率
0.00%
发文量
80
审稿时长
18 weeks
期刊最新文献
Building research infrastructure to advance precision medicine in colorectal cancer. EEC-GIFT: a fairness-aware machine learning framework for lung cancer screening eligibility using real-world data. Risks of colorectal and extracolonic cancers following colorectal cancer: a systematic review and Meta-Analysis. AI meets informed consent: a new era for clinical trial communication. Forward momentum: Progressive change through diversity equity and inclusion initiatives (DEI) in academic healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1