Wearable fall risk assessment by discriminating recessive weak foot individual.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2025-03-20 DOI:10.1186/s12984-025-01599-8
Zhen Song, Jianlin Ou, Shibin Wu, Lin Shu, Qihan Fu, Xiangmin Xu
{"title":"Wearable fall risk assessment by discriminating recessive weak foot individual.","authors":"Zhen Song, Jianlin Ou, Shibin Wu, Lin Shu, Qihan Fu, Xiangmin Xu","doi":"10.1186/s12984-025-01599-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sensor-based technologies have been widely used in fall risk assessment. To enhance the model's robustness and reliability, it is crucial to analyze and discuss the factors contributing to the misclassification of certain individuals, enabling purposeful and interpretable refinement.</p><p><strong>Methods: </strong>This study identified an abnormal gait pattern termed \"Recessive weak foot (RWF),\" characterized by a discontinuous high-risk gait on the weak foot side, observed through weak foot feature space. This condition negatively affected the training and performance of fall risk assessment models. To address this, we proposed a trainable threshold method to discriminate individuals with this pattern, thereby enhancing the model's generalization performance. We conducted feasibility and ablation studies on two self-established datasets and tested the compatibility on two published gait-related Parkinson's disease (PD) datasets.</p><p><strong>Results: </strong>Guided by a customized index and the optimized adaptive thresholds, our method effectively screened out the RWF individuals. Specifically, after fine adaptation, the individual-specific models could achieve accuracies of 87.5% and 73.6% on an enhanced dataset. Compared to the baseline, the proposed two-stage model demonstrated improved performance, with an accuracy of 85.4% and sensitivity of 87.5%. In PD dataset, our method mitigated potential overfitting from low feature dimensions, increasing accuracy by 4.7%.</p><p><strong>Conclusions: </strong>Our results indicate the proposed method enhanced model generalization by allowing the model to account for individual differences in gait patterns and served as an effective tool for quality control, helping to reduce misdiagnosis. The identification of the RWF gait pattern prompted connections to related studies and theories, suggesting avenues for further research. Future investigations are needed to further explore the implications of this gait pattern and verify the method's compatibility.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"64"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01599-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sensor-based technologies have been widely used in fall risk assessment. To enhance the model's robustness and reliability, it is crucial to analyze and discuss the factors contributing to the misclassification of certain individuals, enabling purposeful and interpretable refinement.

Methods: This study identified an abnormal gait pattern termed "Recessive weak foot (RWF)," characterized by a discontinuous high-risk gait on the weak foot side, observed through weak foot feature space. This condition negatively affected the training and performance of fall risk assessment models. To address this, we proposed a trainable threshold method to discriminate individuals with this pattern, thereby enhancing the model's generalization performance. We conducted feasibility and ablation studies on two self-established datasets and tested the compatibility on two published gait-related Parkinson's disease (PD) datasets.

Results: Guided by a customized index and the optimized adaptive thresholds, our method effectively screened out the RWF individuals. Specifically, after fine adaptation, the individual-specific models could achieve accuracies of 87.5% and 73.6% on an enhanced dataset. Compared to the baseline, the proposed two-stage model demonstrated improved performance, with an accuracy of 85.4% and sensitivity of 87.5%. In PD dataset, our method mitigated potential overfitting from low feature dimensions, increasing accuracy by 4.7%.

Conclusions: Our results indicate the proposed method enhanced model generalization by allowing the model to account for individual differences in gait patterns and served as an effective tool for quality control, helping to reduce misdiagnosis. The identification of the RWF gait pattern prompted connections to related studies and theories, suggesting avenues for further research. Future investigations are needed to further explore the implications of this gait pattern and verify the method's compatibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Wearable fall risk assessment by discriminating recessive weak foot individual. Imu-based kinematic analysis to enhance upper limb motor function assessment in neuromuscular diseases. Investigating the cortical effect of false positive feedback on motor learning in motor imagery based rehabilitative BCI training. Therapeutic and orthotic effects of an adaptive functional electrical stimulation system on gait biomechanics in participants with stroke. A motor unit action potential-based method for surface electromyography decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1