{"title":"Frequency- and State-Dependent Dynamics of EEG Microstates During Propofol Anesthesia.","authors":"Yun Zhang, Haidong Wang, Fei Yan, Dawei Song, Qiang Wang, Yubo Wang, Liyu Huang","doi":"10.1016/j.neuroimage.2025.121159","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5-4 Hz) and EEG-without-delta (4-30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1-MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121159"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5-4 Hz) and EEG-without-delta (4-30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1-MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.