Keyla Vitória Marques Xavier, Ana Carolina de Oliveira Luz, José Wilson Silva-Junior, Beatriz Souza Toscano de Melo, Marcus Vinícius de Aragão Batista, Adrianne Maria de Albuquerque Silva, Valdir de Queiroz Balbino, Tereza Cristina Leal-Balbino
{"title":"Molecular epidemiological study of Pseudomonas aeruginosa strains isolated from hospitals in Brazil by MLST and CRISPR/Cas system analysis.","authors":"Keyla Vitória Marques Xavier, Ana Carolina de Oliveira Luz, José Wilson Silva-Junior, Beatriz Souza Toscano de Melo, Marcus Vinícius de Aragão Batista, Adrianne Maria de Albuquerque Silva, Valdir de Queiroz Balbino, Tereza Cristina Leal-Balbino","doi":"10.1007/s00438-025-02239-5","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas system defends bacteria and archaea against invasive pathogens, such as phages, establishing an immunological memory from this interaction. Pseudomonas aeruginosa, an opportunistic pathogen, represents a significant public health concern due to its multidrug resistance. This study conducted a molecular epidemiological analysis of clinical isolates of Pseudomonas aeruginosa in Brazil using multilocus sequence typing (MLST) and characterization of CRISPR/Cas system. Most P. aeruginosa isolates harbored the type I-F CRISPR/Cas system (83%), with a subset also exhibiting the type I-E system. Additionally, some isolates presented incomplete CRISPR/Cas systems in their secondary loci. Notably, the isolate Pae93 exhibited a genetic composition rich in phage-related proteins proximal to the orphan CRISPR locus. The identification and characterization of spacer sequences, including previously undocumented ones, revealed a remarkable diversity of predatory mobile genetic elements (MGEs) among the P. aeruginosa isolates studied. The spacer sequences were incorporated into the MGE library. Additionally, the study identified the existence of prophages and anti-CRISPR genes. Two new sequence types (STs 3383 and 3384) were identified and added to the PubMLST database. No discernible correlation was established between the observed STs and the previously delineated CRISPR genotypes. However, the CRISPR system remains valuable for elucidating specific interactions between microorganisms and MGEs. The Brazilian population of clinical P. aeruginosa isolates was shown to be genetically heterogeneous with a non-clonal distribution, as revealed by MLST analysis. The presence of high-risk clones, such as ST 244 and ST 235, underscores the importance of robust epidemiological surveillance and infection control strategies for P. aeruginosa, especially in healthcare settings. This study significantly contributes to the understanding of the molecular epidemiology of these isolates in Brazil.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"33"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02239-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas system defends bacteria and archaea against invasive pathogens, such as phages, establishing an immunological memory from this interaction. Pseudomonas aeruginosa, an opportunistic pathogen, represents a significant public health concern due to its multidrug resistance. This study conducted a molecular epidemiological analysis of clinical isolates of Pseudomonas aeruginosa in Brazil using multilocus sequence typing (MLST) and characterization of CRISPR/Cas system. Most P. aeruginosa isolates harbored the type I-F CRISPR/Cas system (83%), with a subset also exhibiting the type I-E system. Additionally, some isolates presented incomplete CRISPR/Cas systems in their secondary loci. Notably, the isolate Pae93 exhibited a genetic composition rich in phage-related proteins proximal to the orphan CRISPR locus. The identification and characterization of spacer sequences, including previously undocumented ones, revealed a remarkable diversity of predatory mobile genetic elements (MGEs) among the P. aeruginosa isolates studied. The spacer sequences were incorporated into the MGE library. Additionally, the study identified the existence of prophages and anti-CRISPR genes. Two new sequence types (STs 3383 and 3384) were identified and added to the PubMLST database. No discernible correlation was established between the observed STs and the previously delineated CRISPR genotypes. However, the CRISPR system remains valuable for elucidating specific interactions between microorganisms and MGEs. The Brazilian population of clinical P. aeruginosa isolates was shown to be genetically heterogeneous with a non-clonal distribution, as revealed by MLST analysis. The presence of high-risk clones, such as ST 244 and ST 235, underscores the importance of robust epidemiological surveillance and infection control strategies for P. aeruginosa, especially in healthcare settings. This study significantly contributes to the understanding of the molecular epidemiology of these isolates in Brazil.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.