Spatiotemporal regulation of the bone immune microenvironment via a 'Zn2+-quercetin' hierarchical delivery system for bone regeneration.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Regenerative Biomaterials Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbaf006
Hengliang Sun, Yedan Chen, Xiaoqin Sang, Qingxiang Liu, Haoran Yu, Shaojun Hu, Yingji Mao, Li Zhang
{"title":"Spatiotemporal regulation of the bone immune microenvironment via a 'Zn<sup>2+</sup>-quercetin' hierarchical delivery system for bone regeneration.","authors":"Hengliang Sun, Yedan Chen, Xiaoqin Sang, Qingxiang Liu, Haoran Yu, Shaojun Hu, Yingji Mao, Li Zhang","doi":"10.1093/rb/rbaf006","DOIUrl":null,"url":null,"abstract":"<p><p>The immunoregulation of tissue-engineered bone has emerged as a prominent area for bone defect repair. While this field demonstrates considerable potential, effectively managing relevant factors and maintaining a balanced immune microenvironment in practical applications remain substantial challenges that require resolution. In this study, we tested a novel comprehensive hierarchical delivery system based on the requirements of a natural immune microenvironment for inflammatory factors, to optimize local immune responses through precise regulation of drug release. Quercetin (Que)-loaded zeolite imidazolate framework-8 (ZIF-8) nanoparticles were embedded in gelatin methacrylate to create a drug-release system featuring a Zn<sup>2+</sup> shell and quercetin core. <i>In vivo</i> and <i>in vitro</i> studies demonstrated that this dual sustained-release hydrogel-ZIF-8 system can produce low concentrations of Zn<sup>2+</sup> at an early stage, resulting in a mild anti-inflammatory effect and proliferation of bone marrow mesenchymal stem cells. Moreover, as inflammation advances, the release of quercetin works synergistically with Zn<sup>2+</sup> to enhance anti-inflammatory responses, reconfigure the local microenvironment, and mitigate the inflammatory response that adversely impacts bone health by inhibiting the Nuclear Factor-kappa B (NF-κB) signaling pathway, thereby promoting osteogenic differentiation. This system is pioneering for sequential microenvironment regulation based on its diverse anti-inflammatory properties, offering a novel and comprehensive strategy for bone immune regulation in the clinical treatment of bone defects.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf006"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The immunoregulation of tissue-engineered bone has emerged as a prominent area for bone defect repair. While this field demonstrates considerable potential, effectively managing relevant factors and maintaining a balanced immune microenvironment in practical applications remain substantial challenges that require resolution. In this study, we tested a novel comprehensive hierarchical delivery system based on the requirements of a natural immune microenvironment for inflammatory factors, to optimize local immune responses through precise regulation of drug release. Quercetin (Que)-loaded zeolite imidazolate framework-8 (ZIF-8) nanoparticles were embedded in gelatin methacrylate to create a drug-release system featuring a Zn2+ shell and quercetin core. In vivo and in vitro studies demonstrated that this dual sustained-release hydrogel-ZIF-8 system can produce low concentrations of Zn2+ at an early stage, resulting in a mild anti-inflammatory effect and proliferation of bone marrow mesenchymal stem cells. Moreover, as inflammation advances, the release of quercetin works synergistically with Zn2+ to enhance anti-inflammatory responses, reconfigure the local microenvironment, and mitigate the inflammatory response that adversely impacts bone health by inhibiting the Nuclear Factor-kappa B (NF-κB) signaling pathway, thereby promoting osteogenic differentiation. This system is pioneering for sequential microenvironment regulation based on its diverse anti-inflammatory properties, offering a novel and comprehensive strategy for bone immune regulation in the clinical treatment of bone defects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
期刊最新文献
Biomaterials for neuroengineering: applications and challenges. Spatiotemporal regulation of the bone immune microenvironment via a 'Zn2+-quercetin' hierarchical delivery system for bone regeneration. Optimizing β-TCP with E-rhBMP-2-infused fibrin for vertical bone regeneration in a mouse calvarium model. Up IGF-I via high-toughness adaptive hydrogels for remodeling growth plate of children. Balancing sterilization and functional properties in Poloxamer 407 hydrogels: comparing heat and radiation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1