How to add baskets to an ongoing basket trial with information borrowing.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-03-20 DOI:10.1177/09622802251316961
Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki
{"title":"How to add baskets to an ongoing basket trial with information borrowing.","authors":"Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki","doi":"10.1177/09622802251316961","DOIUrl":null,"url":null,"abstract":"<p><p>Basket trials test a single therapeutic treatment on several patient populations under one master protocol. A desirable adaptive design feature is the ability to incorporate new baskets to an ongoing trial. Limited basket sample sizes can result in reduced power and precision of treatment effect estimates, which could be amplified in added baskets due to the shorter recruitment time. While various Bayesian information borrowing techniques have been introduced to tackle the issue of small sample sizes, the impact of including new baskets into the borrowing model has yet to be investigated. We explore approaches for adding baskets to an ongoing trial under information borrowing. Basket trials have pre-defined efficacy criteria to determine whether the treatment is effective for patients in each basket. The efficacy criteria are often calibrated a-priori in order to control the basket-wise type I error rate to a nominal level. Traditionally, this is done under a null scenario in which the treatment is ineffective in all baskets, however, we show that calibrating under this scenario alone will not guarantee error control under alternative scenarios. We propose a novel calibration approach that is more robust to false decision making. Simulation studies are conducted to assess the performance of the approaches for adding a basket, which is monitored through type I error rate control and power. The results display a substantial improvement in power for a new basket, however, this comes with potential inflation of error rates. We show that this can be reduced under the proposed calibration procedure.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251316961"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251316961","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Basket trials test a single therapeutic treatment on several patient populations under one master protocol. A desirable adaptive design feature is the ability to incorporate new baskets to an ongoing trial. Limited basket sample sizes can result in reduced power and precision of treatment effect estimates, which could be amplified in added baskets due to the shorter recruitment time. While various Bayesian information borrowing techniques have been introduced to tackle the issue of small sample sizes, the impact of including new baskets into the borrowing model has yet to be investigated. We explore approaches for adding baskets to an ongoing trial under information borrowing. Basket trials have pre-defined efficacy criteria to determine whether the treatment is effective for patients in each basket. The efficacy criteria are often calibrated a-priori in order to control the basket-wise type I error rate to a nominal level. Traditionally, this is done under a null scenario in which the treatment is ineffective in all baskets, however, we show that calibrating under this scenario alone will not guarantee error control under alternative scenarios. We propose a novel calibration approach that is more robust to false decision making. Simulation studies are conducted to assess the performance of the approaches for adding a basket, which is monitored through type I error rate control and power. The results display a substantial improvement in power for a new basket, however, this comes with potential inflation of error rates. We show that this can be reduced under the proposed calibration procedure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Boosting distributional copula regression for bivariate binary, discrete and mixed responses. A connection between covariate adjustment and stratified randomization in randomized clinical trials. Additive hazard causal model with a binary instrumental variable. Covariate-adjusted inference for doubly adaptive biased coin design. Effect estimation in the presence of a misclassified binary mediator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1