TempTrans-MIL: A General Approach to Enhancing Multimodal Tactile-Driven Robotic Manipulation Classification Tasks

IF 7.3 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS IEEE/ASME Transactions on Mechatronics Pub Date : 2025-03-20 DOI:10.1109/TMECH.2025.3546938
Jingnan Wang;Wenjia Ouyang;Senlin Fang;Yupo Zhang;Xinyu Wu;Zhengkun Yi
{"title":"TempTrans-MIL: A General Approach to Enhancing Multimodal Tactile-Driven Robotic Manipulation Classification Tasks","authors":"Jingnan Wang;Wenjia Ouyang;Senlin Fang;Yupo Zhang;Xinyu Wu;Zhengkun Yi","doi":"10.1109/TMECH.2025.3546938","DOIUrl":null,"url":null,"abstract":"In tactile-driven robotic manipulation, handling high-dimensional, multimodal tactile time series data from different tactile sensors presents challenges in feature extraction, processing, and interpretation. This study tackles these challenges by proposing a robust method that effectively processes tactile time series data, without visual input. We propose the temporal transformer-based multiple instance learning (TempTrans-MIL) model, a deep learning approach for high-dimensional tactile time series data in robotic manipulation classification tasks. The model is an MIL-based framework treats each short-term multimodal tactile time series as a bag of instances. It uses an inception module-based encoder for instance-level temporal feature extraction, and an MIL module to integrate bag-level features using tokenized transformers with learnable wavelet positional encoding. Extensive experiments in robotic manipulation tasks, using both publicly available and our own collected dataset, demonstrate that our proposed TempTrans-MIL model significantly outperforms baselines. Our proposed model achieves a good balance between classification accuracy and computational efficiency, with accuracies of 88.50% for surface material recognition, 91.75% for grasp stability detection, and 99.31% for robotic palpation task, highlighting its superior performance across various tasks.","PeriodicalId":13372,"journal":{"name":"IEEE/ASME Transactions on Mechatronics","volume":"30 5","pages":"3915-3926"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ASME Transactions on Mechatronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934968/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In tactile-driven robotic manipulation, handling high-dimensional, multimodal tactile time series data from different tactile sensors presents challenges in feature extraction, processing, and interpretation. This study tackles these challenges by proposing a robust method that effectively processes tactile time series data, without visual input. We propose the temporal transformer-based multiple instance learning (TempTrans-MIL) model, a deep learning approach for high-dimensional tactile time series data in robotic manipulation classification tasks. The model is an MIL-based framework treats each short-term multimodal tactile time series as a bag of instances. It uses an inception module-based encoder for instance-level temporal feature extraction, and an MIL module to integrate bag-level features using tokenized transformers with learnable wavelet positional encoding. Extensive experiments in robotic manipulation tasks, using both publicly available and our own collected dataset, demonstrate that our proposed TempTrans-MIL model significantly outperforms baselines. Our proposed model achieves a good balance between classification accuracy and computational efficiency, with accuracies of 88.50% for surface material recognition, 91.75% for grasp stability detection, and 99.31% for robotic palpation task, highlighting its superior performance across various tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TempTrans-MIL:一种增强多模态触觉驱动机器人操作分类任务的通用方法
在触觉驱动的机器人操作中,处理来自不同触觉传感器的高维、多模态触觉时间序列数据在特征提取、处理和解释方面提出了挑战。本研究通过提出一种鲁棒的方法来解决这些挑战,该方法可以有效地处理触觉时间序列数据,而无需视觉输入。我们提出了基于时间转换器的多实例学习(TempTrans-MIL)模型,这是一种用于机器人操作分类任务中高维触觉时间序列数据的深度学习方法。该模型是一个基于mil的框架,将每个短期多模态触觉时间序列视为一个实例包。它使用基于初始模块的编码器进行实例级时间特征提取,并使用MIL模块使用标记化变压器和可学习的小波位置编码集成袋级特征。在机器人操作任务中,使用公开可用的和我们自己收集的数据集进行了广泛的实验,证明我们提出的TempTrans-MIL模型显著优于基线。我们提出的模型在分类精度和计算效率之间取得了很好的平衡,表面材料识别的准确率为88.50%,抓取稳定性检测的准确率为91.75%,机器人触诊任务的准确率为99.31%,突出了其在各种任务中的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ASME Transactions on Mechatronics
IEEE/ASME Transactions on Mechatronics 工程技术-工程:电子与电气
CiteScore
11.60
自引率
18.80%
发文量
527
审稿时长
7.8 months
期刊介绍: IEEE/ASME Transactions on Mechatronics publishes high quality technical papers on technological advances in mechatronics. A primary purpose of the IEEE/ASME Transactions on Mechatronics is to have an archival publication which encompasses both theory and practice. Papers published in the IEEE/ASME Transactions on Mechatronics disclose significant new knowledge needed to implement intelligent mechatronics systems, from analysis and design through simulation and hardware and software implementation. The Transactions also contains a letters section dedicated to rapid publication of short correspondence items concerning new research results.
期刊最新文献
TechRxiv: Share Your Preprint Research with the World! IEEE/ASME Transactions on Mechatronics Information for Authors Blank Page Design and Control of a Compact Series Elastic Actuator Module for Robots in MRI Scanners Deep Learning-Aided Time-Discrete Bioprinting for Single-Cell Encapsulation in Microgel With Composable Stiffness Gradients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1