Topology and Nuclear Size Determine Cell Packing on Growing Lung Spheroids

IF 15.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2025-03-21 DOI:10.1103/physrevx.15.011067
Wenhui Tang, Jessie Huang, Adrian F. Pegoraro, James H. Zhang, Yiwen Tang, Darrell N. Kotton, Dapeng Bi, Ming Guo
{"title":"Topology and Nuclear Size Determine Cell Packing on Growing Lung Spheroids","authors":"Wenhui Tang, Jessie Huang, Adrian F. Pegoraro, James H. Zhang, Yiwen Tang, Darrell N. Kotton, Dapeng Bi, Ming Guo","doi":"10.1103/physrevx.15.011067","DOIUrl":null,"url":null,"abstract":"Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various tissue structures and control development. These arrangements can be regulated by tissue geometry, biochemical cues, as well as mechanical perturbations. However, how cells pack during dynamic three-dimensional multicellular architectures formation remains unclear. Here, examining a growing spherical multicellular system, human lung alveolospheres, we observe an emergence of hexagonal packing order and a structural transition of cells that comprise the spherical epithelium. Surprisingly, the cell packing behavior on the spherical surface of lung alveolospheres resembles hard-disks packing on spheres, where the less deformable cell nuclei act as effective “hard disks” and prevent cells from getting too close. Nucleus-to-cell size ratio increases during lung spheroids growth; as a result, we find more hexagon-concentrated cellular packing with increasing bond orientational order. Furthermore, by osmotically changing the compactness of cells on alveolospheres, we observe a more ordered packing when nucleus-to-cell size ratio increases, and vice versa. These more ordered cell packing characteristics are consistent with reduced cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as cellular maturation and tissue morphogenesis. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"16 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011067","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various tissue structures and control development. These arrangements can be regulated by tissue geometry, biochemical cues, as well as mechanical perturbations. However, how cells pack during dynamic three-dimensional multicellular architectures formation remains unclear. Here, examining a growing spherical multicellular system, human lung alveolospheres, we observe an emergence of hexagonal packing order and a structural transition of cells that comprise the spherical epithelium. Surprisingly, the cell packing behavior on the spherical surface of lung alveolospheres resembles hard-disks packing on spheres, where the less deformable cell nuclei act as effective “hard disks” and prevent cells from getting too close. Nucleus-to-cell size ratio increases during lung spheroids growth; as a result, we find more hexagon-concentrated cellular packing with increasing bond orientational order. Furthermore, by osmotically changing the compactness of cells on alveolospheres, we observe a more ordered packing when nucleus-to-cell size ratio increases, and vice versa. These more ordered cell packing characteristics are consistent with reduced cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as cellular maturation and tissue morphogenesis. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓扑结构和核大小决定生长的肺球体上的细胞堆积
在多细胞生物系统中,细胞以时空精确的位置协调形成各种组织结构并控制发育。这些排列可以通过组织几何形状、生化线索以及机械扰动来调节。然而,在动态三维多细胞结构形成过程中,细胞是如何堆积的仍不清楚。在这里,检查一个正在生长的球形多细胞系统,人肺泡球,我们观察到六边形排列顺序的出现和组成球形上皮的细胞的结构转变。令人惊讶的是,肺泡球球形表面的细胞堆积行为类似于球体上的硬盘堆积,其中不易变形的细胞核充当有效的“硬盘”,防止细胞靠得太近。肺球体生长过程中细胞核与细胞大小比增大;结果表明,随着键的取向顺序的增加,六边形密集的细胞堆积增多。此外,通过渗透改变肺泡球上细胞的致密性,我们观察到当细胞核与细胞大小比增加时,排列更有序,反之亦然。这些更有序的细胞填充特征与细胞动力学的降低相一致,共同表明更好的细胞填充稳定了局部细胞邻域,并可能调节更复杂的生物功能,如细胞成熟和组织形态发生。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Deterministic 1D domain wall motion with nucleation-free nature in sliding ferroelectric switching Observation of anomalous Floquet non-Abelian topological insulators Traveling-wave parametric amplifier with passive reverse isolation Superconductivity from spin-canting fluctuations in rhombohedral graphene Harnessing quantum back-action for time-series processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1