Fuzzy Classification of Mineral Resources: Moving Toward Overlapping Categories to Account for Geological, Economic, Metallurgical, Environmental, and Operational Criteria
Nadia Mery, Mohammad Maleki, Gabriel País, Andrés Molina, Alejandro Cáceres, Xavier Emery
{"title":"Fuzzy Classification of Mineral Resources: Moving Toward Overlapping Categories to Account for Geological, Economic, Metallurgical, Environmental, and Operational Criteria","authors":"Nadia Mery, Mohammad Maleki, Gabriel País, Andrés Molina, Alejandro Cáceres, Xavier Emery","doi":"10.1007/s11053-025-10470-5","DOIUrl":null,"url":null,"abstract":"<p>A pivotal aspect in the evaluation of mining projects is the classification of mineral resources, which directly influences the definition of mineral reserves and significantly impacts mine planning and operational stages. However, the current classification methodologies often need specificity regarding the methods and parameters employed and heavily rely on the qualified/competent person’s judgment. This study addresses these gaps by proposing a pioneering fuzzy approach to assess grade and tonnage uncertainties. By allowing for overlapping resource categories and directly incorporating economic, geological, metallurgical, environmental, and operational criteria, we aim to provide tools for decision-making and for the final classification and public disclosure of mineral resources and reserves. We demonstrate the potential of our proposed methodology through an application to an iron ore deposit case study and through a detailed discussion on its uses, contributions, strengths, weaknesses, and on whether it complies with international reporting codes.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"24 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10470-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A pivotal aspect in the evaluation of mining projects is the classification of mineral resources, which directly influences the definition of mineral reserves and significantly impacts mine planning and operational stages. However, the current classification methodologies often need specificity regarding the methods and parameters employed and heavily rely on the qualified/competent person’s judgment. This study addresses these gaps by proposing a pioneering fuzzy approach to assess grade and tonnage uncertainties. By allowing for overlapping resource categories and directly incorporating economic, geological, metallurgical, environmental, and operational criteria, we aim to provide tools for decision-making and for the final classification and public disclosure of mineral resources and reserves. We demonstrate the potential of our proposed methodology through an application to an iron ore deposit case study and through a detailed discussion on its uses, contributions, strengths, weaknesses, and on whether it complies with international reporting codes.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.