{"title":"Electrical Control of Spin Polarization in a Multiferroic Heterojunction Based on One-Dimensional Chiral Hybrid Metal Halide","authors":"Zeyang Xu, Xuyang Xue, Zixuan Zhang, Baorui Mao, Ruiqing Li, Wenping Gao, Hangwen Guo, Haipeng Lu, Huashan Li, Jingying Wang","doi":"10.1021/acsnano.4c17686","DOIUrl":null,"url":null,"abstract":"Hybrid metal halide materials have been demonstrated to show potential in spintronic applications. In the field of spintronics, controlling the spin degree of freedom by electrical means represents a significant advancement. In this work, we present a spintronic device with a ferromagnet/ferroelectric/ferromagnet heterostructure, in which a one-dimensional (1D) chiral hybrid metal halide serves as an interlayer. The ferroelectricity of the material has been confirmed through both experimental and theoretical approaches. Unlike conventional magnetic tunnel junctions, this multiferroic device exhibits four distinct resistance states, which can be tuned by magnetic and electric fields. Notably, the sign of magnetoresistance can be modulated by an applied bias voltage, demonstrating that the spin polarization of carriers injected from ferromagnetic electrodes can be controlled by an external electric field. Our study not only provides a feasible pathway for electrically controlled spin but also highlights the potential of chiral hybrid metal halides in spintronic applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17686","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid metal halide materials have been demonstrated to show potential in spintronic applications. In the field of spintronics, controlling the spin degree of freedom by electrical means represents a significant advancement. In this work, we present a spintronic device with a ferromagnet/ferroelectric/ferromagnet heterostructure, in which a one-dimensional (1D) chiral hybrid metal halide serves as an interlayer. The ferroelectricity of the material has been confirmed through both experimental and theoretical approaches. Unlike conventional magnetic tunnel junctions, this multiferroic device exhibits four distinct resistance states, which can be tuned by magnetic and electric fields. Notably, the sign of magnetoresistance can be modulated by an applied bias voltage, demonstrating that the spin polarization of carriers injected from ferromagnetic electrodes can be controlled by an external electric field. Our study not only provides a feasible pathway for electrically controlled spin but also highlights the potential of chiral hybrid metal halides in spintronic applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.