Porosity Tuning of MoS2/Graphene Aerogel via the Boudouard Reaction for Enhanced Degradation of Tetracycline under Visible-Light

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-03-21 DOI:10.1021/acs.iecr.4c04898
Chinmayee Das, Tajamul Shafi, Brajesh Kumar Dubey, Shamik Chowdhury
{"title":"Porosity Tuning of MoS2/Graphene Aerogel via the Boudouard Reaction for Enhanced Degradation of Tetracycline under Visible-Light","authors":"Chinmayee Das, Tajamul Shafi, Brajesh Kumar Dubey, Shamik Chowdhury","doi":"10.1021/acs.iecr.4c04898","DOIUrl":null,"url":null,"abstract":"Composite aerogel photocatalysts (CAPs) offer enhanced stability, easy recovery, and high photocatalytic performance. Optimizing the porosity, morphology, and interconnectivity of the pores in CAPs is essential for effective photocatalysis. In this study, a molybdenum disulfide/graphene CAP was synthesized and modified through physical activation to improve its photocatalytic activity for tetracycline (TC) degradation under visible-light irradiation. Activation with carbon dioxide (CO<sub>2</sub>) significantly enhanced photocatalytic performance by increasing specific surface area, pore volume, and mesopore size, thereby improving light absorption and charge separation. This enhancement resulted from the Boudouard reaction, which created pores or defects in the graphene lattice. However, excessive pore formation could compromise the structural integrity of the graphene sheets. The CAP activated at 750 °C degraded 95% of TC in 90 min under visible light, outperforming both unactivated and chemically activated CAPs. These results demonstrate that CO<sub>2</sub>-mediated physical activation is a promising approach to improving CAP performance for wastewater treatment.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"41 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04898","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Composite aerogel photocatalysts (CAPs) offer enhanced stability, easy recovery, and high photocatalytic performance. Optimizing the porosity, morphology, and interconnectivity of the pores in CAPs is essential for effective photocatalysis. In this study, a molybdenum disulfide/graphene CAP was synthesized and modified through physical activation to improve its photocatalytic activity for tetracycline (TC) degradation under visible-light irradiation. Activation with carbon dioxide (CO2) significantly enhanced photocatalytic performance by increasing specific surface area, pore volume, and mesopore size, thereby improving light absorption and charge separation. This enhancement resulted from the Boudouard reaction, which created pores or defects in the graphene lattice. However, excessive pore formation could compromise the structural integrity of the graphene sheets. The CAP activated at 750 °C degraded 95% of TC in 90 min under visible light, outperforming both unactivated and chemically activated CAPs. These results demonstrate that CO2-mediated physical activation is a promising approach to improving CAP performance for wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Cu3TiO4/Carbon Dots/g-C3N4 Heterojunction: An Efficient Photocatalyst for Multifarious Reactions Investigation of the Synergistic Effect of Combined Antimicrobial Agents and Insect Repellent Microcapsules on Fabrics A Performance Modeling Study for Zero Fossil CO2 Stack Operation and Solvent Thermal Reclaiming in Post-Combustion Capture Industrial Applications Efficient and Selective Catalytic Oxidation of Ethylbenzene over Co-MOF Synthesized from Waste PET CaO-Enhanced Hematite Oxygen Carrier for the Study of the Characteristics of Flour Chemical Looping Gasification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1