Mitochondrial gene editing and allotopic expression unveil the role of orf125 in the induction of male fertility in some Solanum spp. hybrids and in the evolution of the common potato
{"title":"Mitochondrial gene editing and allotopic expression unveil the role of orf125 in the induction of male fertility in some Solanum spp. hybrids and in the evolution of the common potato","authors":"Rachele Tamburino, Nunzio D'Agostino, Gaetano Aufiero, Alessandro Nicolia, Angelo Facchiano, Deborah Giordano, Lorenza Sannino, Rosa Paparo, Shin-Ichi Arimura, Nunzia Scotti, Teodoro Cardi","doi":"10.1111/pbi.70012","DOIUrl":null,"url":null,"abstract":"Genic-cytoplasmic male sterility (CMS) due to interactions between nuclear and cytoplasmic genomes is a well-known phenomenon in some <i>Solanum</i> spp. hybrids, but genes involved are not known. In this study, the chondriomes of two isonuclear male-fertile and sterile somatic hybrids (SH9A and SH9B, respectively) between the common potato (<i>S. tuberosum</i> Group <i>Tuberosum</i>, <i>tbr</i>) and the wild species <i>S. commersonii</i> were sequenced and compared to those of parental species to identify mitochondrial genes involved in the expression of male sterility. A putative novel gene (<i>orf125</i>) was found only in <i>tbr</i> and in male-sterile hybrids. Physical or functional deletion of <i>orf125</i> by mtDNA editing in SH9B and its allotopic expression in SH9A clearly demonstrated that <i>orf125</i> affects male fertility. Besides knockout mutants induced by mitoTALEN and DddA-derived cytosine base editing, specific <i>orf125</i> missense mutations generated by the latter approach also induced reversion to male fertility in edited SH9B plants, prompting further studies on ORF125 structure–function relationship. The organization of the mitochondrial genome region implicated in CMS was found to be conserved across all common potato accessions, while an identical copy of <i>tbr orf125</i> was detected in accessions belonging to the <i>S. berthaultii</i> species complex (<i>ber</i>). Such findings corroborate the hypothesis that <i>ber</i> accessions with T/β cytoplasm outcrossed as female with Andean potato, giving rise to the differentiation of the Chilean potato, and highlight the origin of mitochondrial factors contributing to genic-cytoplasmic male sterility in some tuber-bearing <i>Solanum</i> hybrids. Our results contribute to the development of innovative breeding approaches in potato.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"214 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genic-cytoplasmic male sterility (CMS) due to interactions between nuclear and cytoplasmic genomes is a well-known phenomenon in some Solanum spp. hybrids, but genes involved are not known. In this study, the chondriomes of two isonuclear male-fertile and sterile somatic hybrids (SH9A and SH9B, respectively) between the common potato (S. tuberosum Group Tuberosum, tbr) and the wild species S. commersonii were sequenced and compared to those of parental species to identify mitochondrial genes involved in the expression of male sterility. A putative novel gene (orf125) was found only in tbr and in male-sterile hybrids. Physical or functional deletion of orf125 by mtDNA editing in SH9B and its allotopic expression in SH9A clearly demonstrated that orf125 affects male fertility. Besides knockout mutants induced by mitoTALEN and DddA-derived cytosine base editing, specific orf125 missense mutations generated by the latter approach also induced reversion to male fertility in edited SH9B plants, prompting further studies on ORF125 structure–function relationship. The organization of the mitochondrial genome region implicated in CMS was found to be conserved across all common potato accessions, while an identical copy of tbr orf125 was detected in accessions belonging to the S. berthaultii species complex (ber). Such findings corroborate the hypothesis that ber accessions with T/β cytoplasm outcrossed as female with Andean potato, giving rise to the differentiation of the Chilean potato, and highlight the origin of mitochondrial factors contributing to genic-cytoplasmic male sterility in some tuber-bearing Solanum hybrids. Our results contribute to the development of innovative breeding approaches in potato.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.