{"title":"Effect of stress-induced martensite and reverse-induced dislocation on α phase precipitation behavior in a metastable β-Ti alloy","authors":"Luyao Tang, Puyi Gao, Jiangkun Fan, Wenyuan Zhang, Ding Zhao, Yinfan Ma, Panpan Fan, Zhixin Zhang, Jinshan Li","doi":"10.1016/j.jmst.2025.01.049","DOIUrl":null,"url":null,"abstract":"Achieving precise control over α phase precipitation is crucial for obtaining ultra-high strength in metastable β-Ti alloys. However, a comprehensive understanding of how deformation products and their reversion counterparts influence α phase precipitation behavior in these exceptional alloys remains elusive. This study explores the influence of strain-induced martensite (SIM) and its reversion-induced dislocation on the α phase precipitation behavior in a metastable β-Ti alloy. After loading and reloading, SIM lath formed, and some SIM laths subsequently reversed into the β phase, introducing band-like regions with dense and parallel arranged <110> dislocations in the β phase matrix. Such dislocations resulted in a band-like area decorated with short rod-like α phase precipitates during isothermal annealing. Meanwhile, the remained strain-induced martensite decomposed directly into α phase, forming a long α phase with a morphology similar to the original martensite. Additionally, both sides of the original SIM laths reversed during isothermal annealing, forming {332}<113><sub>β</sub> twins at the α/β phase interface. This divided the α phase formed in SIM laths from the α phase formed directly in the β matrix.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"183 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving precise control over α phase precipitation is crucial for obtaining ultra-high strength in metastable β-Ti alloys. However, a comprehensive understanding of how deformation products and their reversion counterparts influence α phase precipitation behavior in these exceptional alloys remains elusive. This study explores the influence of strain-induced martensite (SIM) and its reversion-induced dislocation on the α phase precipitation behavior in a metastable β-Ti alloy. After loading and reloading, SIM lath formed, and some SIM laths subsequently reversed into the β phase, introducing band-like regions with dense and parallel arranged <110> dislocations in the β phase matrix. Such dislocations resulted in a band-like area decorated with short rod-like α phase precipitates during isothermal annealing. Meanwhile, the remained strain-induced martensite decomposed directly into α phase, forming a long α phase with a morphology similar to the original martensite. Additionally, both sides of the original SIM laths reversed during isothermal annealing, forming {332}<113>β twins at the α/β phase interface. This divided the α phase formed in SIM laths from the α phase formed directly in the β matrix.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.