Sandro L. Camenzind, Lukas Lang, Benjamin Willenberg, Justinas Pupeikis, Hayk Soghomonyan, Robert Presl, Pabitro Ray, Andreas Wieser, Ursula Keller, Christopher R. Phillips
{"title":"Long-Range and Dead-Zone-Free Dual-Comb Ranging for the Interferometric Tracking of Moving Targets","authors":"Sandro L. Camenzind, Lukas Lang, Benjamin Willenberg, Justinas Pupeikis, Hayk Soghomonyan, Robert Presl, Pabitro Ray, Andreas Wieser, Ursula Keller, Christopher R. Phillips","doi":"10.1021/acsphotonics.4c02199","DOIUrl":null,"url":null,"abstract":"Dual-comb ranging has emerged as an effective technology for long-distance metrology, providing absolute distance measurements with high speed, precision, and accuracy. Here, we demonstrate a dual-comb ranging method that utilizes a free-space transceiver unit, enabling dead-zone-free measurements and simultaneous ranging with interchanged comb roles to allow for long-distance measurements, even when the target is moving. It includes a graphics processing unit (GPU)-accelerated algorithm for real-time signal processing and a free-running single-cavity solid-state dual-comb laser with a carrier wavelength λ<sub>c</sub> ≈ 1055 nm, a pulse repetition rate of 1 GHz, and a repetition rate difference of 5.06 kHz. This combination offers a fast update rate and sufficient signal strength to reach a single-shot time-of-flight precision of around 0.1 μm (i.e., <λ<sub>c</sub>/4) on a cooperative target placed at a distance of more than 40 m. The free-running laser is sufficiently stable to use the phase information for interferometric distance measurements, which improves the single-shot precision to <20 nm. To assess the ranging accuracy, we track the motion of the cooperative target when moved over 40 m and compare it to a reference interferometer. The residuals between the two measurements are below 3 μm. These results highlight the potential of this approach for accurate and dead-zone-free long-distance ranging, supporting real-time tracking with nm-level precision.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"27 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02199","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-comb ranging has emerged as an effective technology for long-distance metrology, providing absolute distance measurements with high speed, precision, and accuracy. Here, we demonstrate a dual-comb ranging method that utilizes a free-space transceiver unit, enabling dead-zone-free measurements and simultaneous ranging with interchanged comb roles to allow for long-distance measurements, even when the target is moving. It includes a graphics processing unit (GPU)-accelerated algorithm for real-time signal processing and a free-running single-cavity solid-state dual-comb laser with a carrier wavelength λc ≈ 1055 nm, a pulse repetition rate of 1 GHz, and a repetition rate difference of 5.06 kHz. This combination offers a fast update rate and sufficient signal strength to reach a single-shot time-of-flight precision of around 0.1 μm (i.e., <λc/4) on a cooperative target placed at a distance of more than 40 m. The free-running laser is sufficiently stable to use the phase information for interferometric distance measurements, which improves the single-shot precision to <20 nm. To assess the ranging accuracy, we track the motion of the cooperative target when moved over 40 m and compare it to a reference interferometer. The residuals between the two measurements are below 3 μm. These results highlight the potential of this approach for accurate and dead-zone-free long-distance ranging, supporting real-time tracking with nm-level precision.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.