Cluster-based downscaling of precipitation using Kolmogorov-Arnold Neural Networks and CMIP6 models: Insights from Oman.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-03-20 DOI:10.1016/j.jenvman.2025.124971
Ali Mardy, Mohammad Reza Nikoo, Mohammad G Zamani, Ghazi Al-Rawas, Rouzbeh Nazari, Jiri Simunek, Ahmad Sana, Amir H Gandomi
{"title":"Cluster-based downscaling of precipitation using Kolmogorov-Arnold Neural Networks and CMIP6 models: Insights from Oman.","authors":"Ali Mardy, Mohammad Reza Nikoo, Mohammad G Zamani, Ghazi Al-Rawas, Rouzbeh Nazari, Jiri Simunek, Ahmad Sana, Amir H Gandomi","doi":"10.1016/j.jenvman.2025.124971","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate precipitation predictions are crucial for addressing climate change impacts on water resources, especially in arid regions like Oman. Therefore, this study evaluates three machine learning models-Random Forest (RF), Multilayer Perceptron Neural Networks (MLP-ANN), and Kolmogorov-Arnold Neural Networks (KANNs)-to downscale and predict precipitation patterns under climate scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. We assessed each model's ability to reproduce past trends and predict future precipitation using historical data from 1995 to 2014 and projections from 2020 to 2099. The KANN model demonstrated exceptional proficiency in forecasting extreme precipitation occurrences, especially in the most severe scenario (SSP5-8.5). The MLP-ANN model offered a balanced methodology, yielding dependable forecasts that are adaptive to fluctuating situations, even amongst small increases in precipitation and uncertainty. The RF model generated the most reliable forecasts, suggesting small increases in future precipitation while closely correlating with historical data. The study indicates distinct seasonal patterns, with peak precipitation occurring during the monsoon season from June to August. The RF model predicted more intense and uniformly distributed precipitation during this period, demonstrating its advanced data processing capabilities. The geographical patterns predicted by each model exhibited temporal stability, highlighting their consistent reliability, which is essential for precise climate predictions. This comparative research highlights the significance of choosing a suitable machine learning model according to distinct forecasting requirements. Effective downscaling methodologies are essential for informed water resources management, particularly in areas susceptible to cyclones and water shortages. These results provide essential direction for policymakers to improve climate resilience, optimize water infrastructure, and formulate adaptation measures in Oman and other dry locations.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"380 ","pages":"124971"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124971","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate precipitation predictions are crucial for addressing climate change impacts on water resources, especially in arid regions like Oman. Therefore, this study evaluates three machine learning models-Random Forest (RF), Multilayer Perceptron Neural Networks (MLP-ANN), and Kolmogorov-Arnold Neural Networks (KANNs)-to downscale and predict precipitation patterns under climate scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. We assessed each model's ability to reproduce past trends and predict future precipitation using historical data from 1995 to 2014 and projections from 2020 to 2099. The KANN model demonstrated exceptional proficiency in forecasting extreme precipitation occurrences, especially in the most severe scenario (SSP5-8.5). The MLP-ANN model offered a balanced methodology, yielding dependable forecasts that are adaptive to fluctuating situations, even amongst small increases in precipitation and uncertainty. The RF model generated the most reliable forecasts, suggesting small increases in future precipitation while closely correlating with historical data. The study indicates distinct seasonal patterns, with peak precipitation occurring during the monsoon season from June to August. The RF model predicted more intense and uniformly distributed precipitation during this period, demonstrating its advanced data processing capabilities. The geographical patterns predicted by each model exhibited temporal stability, highlighting their consistent reliability, which is essential for precise climate predictions. This comparative research highlights the significance of choosing a suitable machine learning model according to distinct forecasting requirements. Effective downscaling methodologies are essential for informed water resources management, particularly in areas susceptible to cyclones and water shortages. These results provide essential direction for policymakers to improve climate resilience, optimize water infrastructure, and formulate adaptation measures in Oman and other dry locations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Enhancement of volatile fatty acids degradation and rapid methanogenesis in a biochar-assisted anaerobic membrane bioreactor via enhancing direct interspecies electron transfer. How do environmental and operational factors impact particulate matter dynamics in building construction? - Insights from real-time sensing. Can central bank green communication reduce carbon emissions of high-energy-consuming firms? Can sustainable policies drive TOD effectively? Insights from multi-scenario simulations. Local government behavior and green technology innovation under ecological goals incentives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1