Ovarian masses suggested for MRI examination: assessment of deep learning models based on non-contrast-enhanced MRI sequences for predicting malignancy.

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Abdominal Radiology Pub Date : 2025-03-21 DOI:10.1007/s00261-025-04891-2
Meijiao Jiang, Chui Kong, Siwei Lu, Qingwan Li, Caiting Chu, Wenhua Li
{"title":"Ovarian masses suggested for MRI examination: assessment of deep learning models based on non-contrast-enhanced MRI sequences for predicting malignancy.","authors":"Meijiao Jiang, Chui Kong, Siwei Lu, Qingwan Li, Caiting Chu, Wenhua Li","doi":"10.1007/s00261-025-04891-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aims to assessed and compare four deep learning(DL) models using non-contrast-enhanced magnetic resonance imaging(MRI) to differentiate benign from malignant ovarian tumors, considering diagnostic efficacy and associated development costs.</p><p><strong>Methods: </strong>526 patients (327 benign lesions vs 199 malignant lesions) who were recommended for MRI due to suspected ovarian masses, confirmed with histopathology, were included in this retrospective study. A training cohort (n=367) and a validation cohort (n=159) were constructed. Based on the images of T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), we evaluated the diagnostic performance of four DL models (ConvNeXt, FBNet, GhostNet, ResNet50) in distinguishing between benign and malignant ovarian tumors. Two radiologists with varying levels of experience independently reviewed all original non-contrast-enhanced MR images from the validation cohort to determine if each case was benign or malignant. The area under the receiver operating characteristic curve (AUC), confusion matrices, accuracy, sensitivity, specificity, positive predictive value(PPV) and negative predictive value(NPV) were used to compare performance.</p><p><strong>Results: </strong>The study of 526 ovarian mass patients (ages 1-92) evaluated four DL models for predicting malignant tumors, with AUCs ranging from 0.8091 to 0.8572 and accuracy between 81.1% and 85.5%. An experienced radiologist achieved 86.2% accuracy, slightly surpassing the DL models, while a less experienced radiologist had 69.2% accuracy. Resnet50 had the highest sensitivity (78.3%) and NPV (87.3%), while ConvNeXt excelled in specificity and PPV (100%). GhostNet and FBNet are more parameter-efficient than other models.</p><p><strong>Conclusion: </strong>The four DL models effectively distinguished between benign and malignant ovarian tumors using non-contrast MRI. These models outperformed less experienced radiologists and were slightly less accurate than experienced ones. ResNet50 had the best predictive performance, while GhostNet was highly accurate with fewer parameters. Our study indicates that DL models based on non-contrast-enhanced MRI have the potential to assist in diagnosis.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04891-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We aims to assessed and compare four deep learning(DL) models using non-contrast-enhanced magnetic resonance imaging(MRI) to differentiate benign from malignant ovarian tumors, considering diagnostic efficacy and associated development costs.

Methods: 526 patients (327 benign lesions vs 199 malignant lesions) who were recommended for MRI due to suspected ovarian masses, confirmed with histopathology, were included in this retrospective study. A training cohort (n=367) and a validation cohort (n=159) were constructed. Based on the images of T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), we evaluated the diagnostic performance of four DL models (ConvNeXt, FBNet, GhostNet, ResNet50) in distinguishing between benign and malignant ovarian tumors. Two radiologists with varying levels of experience independently reviewed all original non-contrast-enhanced MR images from the validation cohort to determine if each case was benign or malignant. The area under the receiver operating characteristic curve (AUC), confusion matrices, accuracy, sensitivity, specificity, positive predictive value(PPV) and negative predictive value(NPV) were used to compare performance.

Results: The study of 526 ovarian mass patients (ages 1-92) evaluated four DL models for predicting malignant tumors, with AUCs ranging from 0.8091 to 0.8572 and accuracy between 81.1% and 85.5%. An experienced radiologist achieved 86.2% accuracy, slightly surpassing the DL models, while a less experienced radiologist had 69.2% accuracy. Resnet50 had the highest sensitivity (78.3%) and NPV (87.3%), while ConvNeXt excelled in specificity and PPV (100%). GhostNet and FBNet are more parameter-efficient than other models.

Conclusion: The four DL models effectively distinguished between benign and malignant ovarian tumors using non-contrast MRI. These models outperformed less experienced radiologists and were slightly less accurate than experienced ones. ResNet50 had the best predictive performance, while GhostNet was highly accurate with fewer parameters. Our study indicates that DL models based on non-contrast-enhanced MRI have the potential to assist in diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
期刊最新文献
LI-RADS for diagnosing hepatocellular carcinoma by contrast-enhanced US with SonoVue and Sonazoid-a single center prospective study. Ovarian masses suggested for MRI examination: assessment of deep learning models based on non-contrast-enhanced MRI sequences for predicting malignancy. Percutaneous management of iatrogenic ureteral injuries using a multistep approach: clinical, functional and long-term outcomes. Adolescent endometriosis: clinical insights and imaging considerations. Artificial intelligence for abdominopelvic trauma imaging: trends, gaps, and future directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1