UVB radiation and amphibian resilience: Analyzing skin color, immune suppression and oxidative stress in Rana kukunoris from different elevations

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2025-03-20 DOI:10.1016/j.ecoenv.2025.118075
Xiaolong Tang , Juan Wu , Haoqi Zhang , Liye Zhong , Rui Su , Ming Ma , Huihui Wang , Miaojun Ma , Qiang Chen
{"title":"UVB radiation and amphibian resilience: Analyzing skin color, immune suppression and oxidative stress in Rana kukunoris from different elevations","authors":"Xiaolong Tang ,&nbsp;Juan Wu ,&nbsp;Haoqi Zhang ,&nbsp;Liye Zhong ,&nbsp;Rui Su ,&nbsp;Ming Ma ,&nbsp;Huihui Wang ,&nbsp;Miaojun Ma ,&nbsp;Qiang Chen","doi":"10.1016/j.ecoenv.2025.118075","DOIUrl":null,"url":null,"abstract":"<div><div>Ultraviolet-B radiation (UVBR), intensified by ozone depletion and climate change, poses a growing ecological threat to amphibians, particularly in high-elevation regions such as the Qinghai-Tibet Plateau. Endemic to this region, <em>Rana kukunoris</em> spans a wide range of elevations, where distinct populations may have evolved unique strategies and regulatory mechanisms to cope with UVBR. However, specific adaptive responses in adult frogs remain underexplored. This study compared the physiological responses of high- and low-altitude <em>Rana kukunoris</em> populations to UVBR exposure, focusing on dorsal color, immune function, antioxidant capacity, and DNA repair gene expression. High-altitude populations exhibited stable, dark pigmentation—potentially reducing the need for rapid melanin synthesis—alongside a robust immune profile and enhanced antioxidant enzyme activity, collectively conferring resilience against oxidative and immune stress under chronic UVBR exposure. Conversely, low-altitude populations exhibited pronounced UVBR-induced responses, including significant skin darkening, heightened immune activation evidenced by increased white blood cell counts, and increased oxidative damage marked by higher malondialdehyde (MDA) levels, coupled with reduced superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, tissue-specific upregulation of DNA repair genes in high-altitude populations suggested a stable DNA repair capacity adapted to high-UVBR environments. These findings reveal distinct physiological strategies within the same species for coping with UVBR across altitudinal gradients. Amid global increases in UVBR, this study offers novel insights into amphibian resilience in high-UVBR habitats and informs conservation strategies for populations across varying elevations.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"294 ","pages":"Article 118075"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325004117","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet-B radiation (UVBR), intensified by ozone depletion and climate change, poses a growing ecological threat to amphibians, particularly in high-elevation regions such as the Qinghai-Tibet Plateau. Endemic to this region, Rana kukunoris spans a wide range of elevations, where distinct populations may have evolved unique strategies and regulatory mechanisms to cope with UVBR. However, specific adaptive responses in adult frogs remain underexplored. This study compared the physiological responses of high- and low-altitude Rana kukunoris populations to UVBR exposure, focusing on dorsal color, immune function, antioxidant capacity, and DNA repair gene expression. High-altitude populations exhibited stable, dark pigmentation—potentially reducing the need for rapid melanin synthesis—alongside a robust immune profile and enhanced antioxidant enzyme activity, collectively conferring resilience against oxidative and immune stress under chronic UVBR exposure. Conversely, low-altitude populations exhibited pronounced UVBR-induced responses, including significant skin darkening, heightened immune activation evidenced by increased white blood cell counts, and increased oxidative damage marked by higher malondialdehyde (MDA) levels, coupled with reduced superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, tissue-specific upregulation of DNA repair genes in high-altitude populations suggested a stable DNA repair capacity adapted to high-UVBR environments. These findings reveal distinct physiological strategies within the same species for coping with UVBR across altitudinal gradients. Amid global increases in UVBR, this study offers novel insights into amphibian resilience in high-UVBR habitats and informs conservation strategies for populations across varying elevations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Acute exposure of perchlorate on zebrafish larvae: Neurotoxicity during development Dilution effect of TEMPO-oxidized cellulose nanofibers on reproduction of Daphnia magna Determinants of plasma poly- and perfluoroalkyl substances during pregnancy: The Japan Environment and Children’s Study Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review The effect and potential mechanisms of per- and polyfluoroalkyl substances (PFAS) exposure on kidney stone risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1