Xiaolong Tang , Juan Wu , Haoqi Zhang , Liye Zhong , Rui Su , Ming Ma , Huihui Wang , Miaojun Ma , Qiang Chen
{"title":"UVB radiation and amphibian resilience: Analyzing skin color, immune suppression and oxidative stress in Rana kukunoris from different elevations","authors":"Xiaolong Tang , Juan Wu , Haoqi Zhang , Liye Zhong , Rui Su , Ming Ma , Huihui Wang , Miaojun Ma , Qiang Chen","doi":"10.1016/j.ecoenv.2025.118075","DOIUrl":null,"url":null,"abstract":"<div><div>Ultraviolet-B radiation (UVBR), intensified by ozone depletion and climate change, poses a growing ecological threat to amphibians, particularly in high-elevation regions such as the Qinghai-Tibet Plateau. Endemic to this region, <em>Rana kukunoris</em> spans a wide range of elevations, where distinct populations may have evolved unique strategies and regulatory mechanisms to cope with UVBR. However, specific adaptive responses in adult frogs remain underexplored. This study compared the physiological responses of high- and low-altitude <em>Rana kukunoris</em> populations to UVBR exposure, focusing on dorsal color, immune function, antioxidant capacity, and DNA repair gene expression. High-altitude populations exhibited stable, dark pigmentation—potentially reducing the need for rapid melanin synthesis—alongside a robust immune profile and enhanced antioxidant enzyme activity, collectively conferring resilience against oxidative and immune stress under chronic UVBR exposure. Conversely, low-altitude populations exhibited pronounced UVBR-induced responses, including significant skin darkening, heightened immune activation evidenced by increased white blood cell counts, and increased oxidative damage marked by higher malondialdehyde (MDA) levels, coupled with reduced superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, tissue-specific upregulation of DNA repair genes in high-altitude populations suggested a stable DNA repair capacity adapted to high-UVBR environments. These findings reveal distinct physiological strategies within the same species for coping with UVBR across altitudinal gradients. Amid global increases in UVBR, this study offers novel insights into amphibian resilience in high-UVBR habitats and informs conservation strategies for populations across varying elevations.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"294 ","pages":"Article 118075"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325004117","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultraviolet-B radiation (UVBR), intensified by ozone depletion and climate change, poses a growing ecological threat to amphibians, particularly in high-elevation regions such as the Qinghai-Tibet Plateau. Endemic to this region, Rana kukunoris spans a wide range of elevations, where distinct populations may have evolved unique strategies and regulatory mechanisms to cope with UVBR. However, specific adaptive responses in adult frogs remain underexplored. This study compared the physiological responses of high- and low-altitude Rana kukunoris populations to UVBR exposure, focusing on dorsal color, immune function, antioxidant capacity, and DNA repair gene expression. High-altitude populations exhibited stable, dark pigmentation—potentially reducing the need for rapid melanin synthesis—alongside a robust immune profile and enhanced antioxidant enzyme activity, collectively conferring resilience against oxidative and immune stress under chronic UVBR exposure. Conversely, low-altitude populations exhibited pronounced UVBR-induced responses, including significant skin darkening, heightened immune activation evidenced by increased white blood cell counts, and increased oxidative damage marked by higher malondialdehyde (MDA) levels, coupled with reduced superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, tissue-specific upregulation of DNA repair genes in high-altitude populations suggested a stable DNA repair capacity adapted to high-UVBR environments. These findings reveal distinct physiological strategies within the same species for coping with UVBR across altitudinal gradients. Amid global increases in UVBR, this study offers novel insights into amphibian resilience in high-UVBR habitats and informs conservation strategies for populations across varying elevations.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.