Bryophytes as metabolic engineering platforms

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2025-03-20 DOI:10.1016/j.pbi.2025.102702
Anya Lillemor Lindström Battle, Lee James Sweetlove
{"title":"Bryophytes as metabolic engineering platforms","authors":"Anya Lillemor Lindström Battle,&nbsp;Lee James Sweetlove","doi":"10.1016/j.pbi.2025.102702","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic engineering of plants offers significant advantages over many microbial systems such as cost-effective scalability and carbon autotrophy. Bryophytes have emerged as promising testbeds for plant metabolic engineering due to their rapid transformation and haploid-dominant lifecycle. The liverwort <em>Marchantia polymorpha</em> and the moss <em>Physcomitrium patens</em> are the best studied bryophytes and an expanding toolkit of genetic resources for both species allows for efficient pathway engineering. Bryophyte metabolism, while broadly conserved with seed plants, exhibits distinct features such as high diversity and amounts of terpenoids and very long-chain polyunsaturated fatty acids (vlcPFAs). In this review, we summarise the relatively limited understanding of bryophyte metabolism and how it diverges from seed plants. We argue that the success of bryophytes as testbed species will require new quantitative knowledge of fluxes in central metabolism and especially those that facilitate high rates of terpenoid and vlcPFA biosynthesis.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102702"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic engineering of plants offers significant advantages over many microbial systems such as cost-effective scalability and carbon autotrophy. Bryophytes have emerged as promising testbeds for plant metabolic engineering due to their rapid transformation and haploid-dominant lifecycle. The liverwort Marchantia polymorpha and the moss Physcomitrium patens are the best studied bryophytes and an expanding toolkit of genetic resources for both species allows for efficient pathway engineering. Bryophyte metabolism, while broadly conserved with seed plants, exhibits distinct features such as high diversity and amounts of terpenoids and very long-chain polyunsaturated fatty acids (vlcPFAs). In this review, we summarise the relatively limited understanding of bryophyte metabolism and how it diverges from seed plants. We argue that the success of bryophytes as testbed species will require new quantitative knowledge of fluxes in central metabolism and especially those that facilitate high rates of terpenoid and vlcPFA biosynthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Phylogenetic and genomic mechanisms shaping glucosinolate innovation Innovations and threats facing the storage of sugar in sugar beet Plant volatile organic compounds: Emission and perception in a changing world Current insights into plant volatile organic compound biosynthesis Developmental genetics of fruit diversity in Brassicaceae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1