Maryam Labaf, Wanting Han, Songqi Zhang, Mingyu Liu, Nolan D Patten, Muqing Li, Susan Patalano, Jill A Macoska, Steven P Balk, Dong Han, Kourosh Zarringhalam, Changmeng Cai
{"title":"Heterogeneous Responses to High-Dose Testosterone in Castration-Resistant Prostate Cancer Tumors with Mixed Rb-Proficient and Rb-Deficient Cells.","authors":"Maryam Labaf, Wanting Han, Songqi Zhang, Mingyu Liu, Nolan D Patten, Muqing Li, Susan Patalano, Jill A Macoska, Steven P Balk, Dong Han, Kourosh Zarringhalam, Changmeng Cai","doi":"10.1158/1535-7163.MCT-24-0716","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen deprivation therapy remains a cornerstone in managing prostate cancer. However, its recurrence often leads to the more aggressive castration-resistant prostate cancer (CRPC). Although second-line androgen receptor signaling inhibition treatments such as enzalutamide and abiraterone are available, their effectiveness against CRPC is only transient. High-dose testosterone (Hi-T) has recently emerged as a promising treatment for CRPC, primarily through the suppression of E2F and MYC signaling. However, the roles of Rb family proteins in influencing this therapeutic response remain debated. In this study, we utilized a CRPC patient-derived xenograft model that includes both Rb pathway-proficient and -deficient cell populations based on the positive or negative expression of RB family genes. Single-cell RNA sequencing analysis revealed that Rb-proficient cells displayed a robust response to Hi-T, whereas Rb-deficient cells exhibited significant resistance. Notably, our analysis indicated increased enrichment of the hypoxia signature in the Rb-deficient cell population. Further studies in RB1-silenced CRPC cell lines showed that treatment with a hypoxia-inducible factor-1α inhibitor can restore the sensitivity of Rb-deficient cells to high-dose dihydrotestosterone treatment. In conclusion, our research provides new molecular insights into CRPC tumor cell responses to Hi-T and proposes a new strategy to resensitize Rb-deficient CRPC cells to Hi-T treatment.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"OF1-OF12"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Androgen deprivation therapy remains a cornerstone in managing prostate cancer. However, its recurrence often leads to the more aggressive castration-resistant prostate cancer (CRPC). Although second-line androgen receptor signaling inhibition treatments such as enzalutamide and abiraterone are available, their effectiveness against CRPC is only transient. High-dose testosterone (Hi-T) has recently emerged as a promising treatment for CRPC, primarily through the suppression of E2F and MYC signaling. However, the roles of Rb family proteins in influencing this therapeutic response remain debated. In this study, we utilized a CRPC patient-derived xenograft model that includes both Rb pathway-proficient and -deficient cell populations based on the positive or negative expression of RB family genes. Single-cell RNA sequencing analysis revealed that Rb-proficient cells displayed a robust response to Hi-T, whereas Rb-deficient cells exhibited significant resistance. Notably, our analysis indicated increased enrichment of the hypoxia signature in the Rb-deficient cell population. Further studies in RB1-silenced CRPC cell lines showed that treatment with a hypoxia-inducible factor-1α inhibitor can restore the sensitivity of Rb-deficient cells to high-dose dihydrotestosterone treatment. In conclusion, our research provides new molecular insights into CRPC tumor cell responses to Hi-T and proposes a new strategy to resensitize Rb-deficient CRPC cells to Hi-T treatment.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.