{"title":"Affected Interactions and Co-transport of Cadmium Sulfide Quantum Dots with Pb2+ by Surface Functionalization","authors":"Dianji Ding, Jiao Fei, Yong Yao, Yanji Jiang, Huimin Sun, Xianqiang Yin","doi":"10.1016/j.jhazmat.2025.138025","DOIUrl":null,"url":null,"abstract":"Quantum dots (QDs), emerging semiconductor nanomaterials, have been detected in various environmental media and can adsorb co-existing contaminants (e.g., Pb<sup>2+</sup>). Surface modifications aimed at enhancing the performance of QDs can significantly affect their physicochemical properties, but their effects on QDs environmental behavior remain unclear. Herein, we investigated the adsorption and co-transport behaviors of aminated (NQD), hydroxylated (OQD), and carboxylated cadmium sulfide QDs (CQD) with Pb<sup>2+</sup> via batch adsorption and quartz sand column experiments. The influence of ionic strength (IS) and cation valence on the co-transport of QDs and Pb<sup>2+</sup> was examined. Our experimental findings revealed that Pb<sup>2+</sup> inhibited the mobility of OQD and CQD but enhanced the transport of NQD due to the surface complexation and cation bridging effects. This promoting effect was weakened with increasing IS and cation valence, indicating the involvement of non-Derjaguin-Landau-Verwey-Overbeek forces. Furthermore, OQD and CQD with high mobility and strong affinity to Pb<sup>2+</sup> effectively promoted the transport of Pb<sup>2+</sup>, with CQD exhibiting a more pronounced effect than OQD. Conversely, NQD reduced Pb<sup>2+</sup> efflux due to their lower mobility and stronger adsorption to Pb<sup>2+</sup>. These results provide valuable insights into the role of surface modifications on QDs and their interactions with co-existing contaminants in subsurface environments.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"45 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138025","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots (QDs), emerging semiconductor nanomaterials, have been detected in various environmental media and can adsorb co-existing contaminants (e.g., Pb2+). Surface modifications aimed at enhancing the performance of QDs can significantly affect their physicochemical properties, but their effects on QDs environmental behavior remain unclear. Herein, we investigated the adsorption and co-transport behaviors of aminated (NQD), hydroxylated (OQD), and carboxylated cadmium sulfide QDs (CQD) with Pb2+ via batch adsorption and quartz sand column experiments. The influence of ionic strength (IS) and cation valence on the co-transport of QDs and Pb2+ was examined. Our experimental findings revealed that Pb2+ inhibited the mobility of OQD and CQD but enhanced the transport of NQD due to the surface complexation and cation bridging effects. This promoting effect was weakened with increasing IS and cation valence, indicating the involvement of non-Derjaguin-Landau-Verwey-Overbeek forces. Furthermore, OQD and CQD with high mobility and strong affinity to Pb2+ effectively promoted the transport of Pb2+, with CQD exhibiting a more pronounced effect than OQD. Conversely, NQD reduced Pb2+ efflux due to their lower mobility and stronger adsorption to Pb2+. These results provide valuable insights into the role of surface modifications on QDs and their interactions with co-existing contaminants in subsurface environments.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.