Systemic identification of functionally conserved lncRNA metabolic regulators in human and mouse livers

IF 25.7 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gastroenterology Pub Date : 2025-03-22 DOI:10.1053/j.gastro.2025.03.015
Chengfei Jiang, Zhe Li, Sunmi Seok, Ping Li, Yonghe Ma, Stephanie K. Podguski, Shria Moturi, Nao Yoneda, Kenji Kawai, Shotaro Uehara, Yasuyuki Ohnishi, Hiroshi Suemizu, Jinwei Zhang, Haiming Cao
{"title":"Systemic identification of functionally conserved lncRNA metabolic regulators in human and mouse livers","authors":"Chengfei Jiang, Zhe Li, Sunmi Seok, Ping Li, Yonghe Ma, Stephanie K. Podguski, Shria Moturi, Nao Yoneda, Kenji Kawai, Shotaro Uehara, Yasuyuki Ohnishi, Hiroshi Suemizu, Jinwei Zhang, Haiming Cao","doi":"10.1053/j.gastro.2025.03.015","DOIUrl":null,"url":null,"abstract":"<h3>BACKGROUND &amp; AIMS</h3>Unlike protein-coding genes, most human long non-coding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that non-conserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs).<h3>METHODS</h3>We developed a sequence-independent strategy to select putative fcLMRs, and performed extensive analysis to determine the functional similarities of putative human and mouse LMR pairs (h/mLMRs).<h3>RESULTS</h3>We found that several pairs of putative fcLMRs share similar functions in regulating gene expression. We further demonstrated that a pair of fcLMRs, h/mLMR1, robustly regulated triglyceride levels by modulating the expression of a similar set of lipogenic genes. Mechanistically, h/mLMR1 binds to PABPC1, a regulator of protein translation, via short motifs on either lncRNA with divergent sequences but similar structures. This interaction inhibits protein translation, activating an amino acid-mTOR-SREBP1 axis to regulate lipogenic gene expression. Intriguingly, PABPC1-binding motifs on each lncRNA fully rescued the functions of their corresponding LMRs in the opposite species. Given the elevated expression of h/mLMR1 in humans and mice with hepatic steatosis, the PABPC1-binding motif on hLMR1 emerges as a potential non-conserved human drug target whose functions can be fully validated in a physiologically relevant setting before clinical studies.<h3>CONCLUSIONS</h3>Our study supports that fcLMRs represent a novel and prevalent biological phenomenon, and deep phenotyping of genetic mLMR mouse models constitutes a powerful approach to understand the pathophysiological role of lncRNAs in the human liver.","PeriodicalId":12590,"journal":{"name":"Gastroenterology","volume":"33 1","pages":""},"PeriodicalIF":25.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.gastro.2025.03.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND & AIMS

Unlike protein-coding genes, most human long non-coding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that non-conserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs).

METHODS

We developed a sequence-independent strategy to select putative fcLMRs, and performed extensive analysis to determine the functional similarities of putative human and mouse LMR pairs (h/mLMRs).

RESULTS

We found that several pairs of putative fcLMRs share similar functions in regulating gene expression. We further demonstrated that a pair of fcLMRs, h/mLMR1, robustly regulated triglyceride levels by modulating the expression of a similar set of lipogenic genes. Mechanistically, h/mLMR1 binds to PABPC1, a regulator of protein translation, via short motifs on either lncRNA with divergent sequences but similar structures. This interaction inhibits protein translation, activating an amino acid-mTOR-SREBP1 axis to regulate lipogenic gene expression. Intriguingly, PABPC1-binding motifs on each lncRNA fully rescued the functions of their corresponding LMRs in the opposite species. Given the elevated expression of h/mLMR1 in humans and mice with hepatic steatosis, the PABPC1-binding motif on hLMR1 emerges as a potential non-conserved human drug target whose functions can be fully validated in a physiologically relevant setting before clinical studies.

CONCLUSIONS

Our study supports that fcLMRs represent a novel and prevalent biological phenomenon, and deep phenotyping of genetic mLMR mouse models constitutes a powerful approach to understand the pathophysiological role of lncRNAs in the human liver.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Gastroenterology
Gastroenterology 医学-胃肠肝病学
CiteScore
45.60
自引率
2.40%
发文量
4366
审稿时长
26 days
期刊介绍: Gastroenterology is the most prominent journal in the field of gastrointestinal disease. It is the flagship journal of the American Gastroenterological Association and delivers authoritative coverage of clinical, translational, and basic studies of all aspects of the digestive system, including the liver and pancreas, as well as nutrition. Some regular features of Gastroenterology include original research studies by leading authorities, comprehensive reviews and perspectives on important topics in adult and pediatric gastroenterology and hepatology. The journal also includes features such as editorials, correspondence, and commentaries, as well as special sections like "Mentoring, Education and Training Corner," "Diversity, Equity and Inclusion in GI," "Gastro Digest," "Gastro Curbside Consult," and "Gastro Grand Rounds." Gastroenterology also provides digital media materials such as videos and "GI Rapid Reel" animations. It is abstracted and indexed in various databases including Scopus, Biological Abstracts, Current Contents, Embase, Nutrition Abstracts, Chemical Abstracts, Current Awareness in Biological Sciences, PubMed/Medline, and the Science Citation Index.
期刊最新文献
Deconstructing Diagnostic Upper Endoscopy for the Novice Learner: A Delphi Survey of Gastroenterology Program Directors Clinical Implementation of Artificial Intelligence in Gastroenterology: Current Landscape, Regulatory Challenges, and Ethical Issues Systemic identification of functionally conserved lncRNA metabolic regulators in human and mouse livers Rifaximin does not increase the rate of 30-day mortality in patients with cirrhosis and daptomycin in two National US-based cohorts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1