A 316 stainless steel rod impacts with a rigid flat: Theory, experiment, and numerical simulation

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2025-03-19 DOI:10.1007/s11433-024-2611-9
Yifan Wang, Xuan Ye, Hao Yan, Tao Wang, Guangyan Huang, Zhuo Zhuang
{"title":"A 316 stainless steel rod impacts with a rigid flat: Theory, experiment, and numerical simulation","authors":"Yifan Wang,&nbsp;Xuan Ye,&nbsp;Hao Yan,&nbsp;Tao Wang,&nbsp;Guangyan Huang,&nbsp;Zhuo Zhuang","doi":"10.1007/s11433-024-2611-9","DOIUrl":null,"url":null,"abstract":"<div><p>A slender rod suffers global vibration in impact. In this study, we present the experimental, numerical, and theoretical studies of the axial responses of a 316 stainless steel rod during vertical impact with a rigid flat. Combining the contact models and the one-dimensional (1D) wave equation, we first develop a semi-analytical vertical impact model for the rods based on a unified theoretical framework, which considers different geometries of the impacting end including the hemispherical nose, the truncated conical nose, and the flat end. Furthermore, we perform free-drop experiments on these rods and numerical simulations to verify the theoretical models. The results show that the strain-rate effect hardens the rod nose and should not be ignored even at a velocity as low as a few meters per second. After the proposal of a dynamic correction factor to adjust the quasi-static contact model, the theoretical, numerical, and experimental results agree well with one another. Also, the three-dimensional (3D) FEM simulations show that the slight deviations between the experimental and the predicted results are due to the slight obliqueness of the rods in the drop. Additionally, we leverage the theoretical tool and FEM simulations to compare the mechanical responses of rods with different impacting ends, and suggestions about the selection of rod noses are obtained.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2611-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A slender rod suffers global vibration in impact. In this study, we present the experimental, numerical, and theoretical studies of the axial responses of a 316 stainless steel rod during vertical impact with a rigid flat. Combining the contact models and the one-dimensional (1D) wave equation, we first develop a semi-analytical vertical impact model for the rods based on a unified theoretical framework, which considers different geometries of the impacting end including the hemispherical nose, the truncated conical nose, and the flat end. Furthermore, we perform free-drop experiments on these rods and numerical simulations to verify the theoretical models. The results show that the strain-rate effect hardens the rod nose and should not be ignored even at a velocity as low as a few meters per second. After the proposal of a dynamic correction factor to adjust the quasi-static contact model, the theoretical, numerical, and experimental results agree well with one another. Also, the three-dimensional (3D) FEM simulations show that the slight deviations between the experimental and the predicted results are due to the slight obliqueness of the rods in the drop. Additionally, we leverage the theoretical tool and FEM simulations to compare the mechanical responses of rods with different impacting ends, and suggestions about the selection of rod noses are obtained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Joint inversion of Rayleigh wave fundamental and higher order mode phase velocity dispersion curves using multi-objective grey wolf optimization
IF 2.6 3区 地球科学Geophysical ProspectingPub Date : 2021-12-23 DOI: 10.1111/1365-2478.13176
Divakar Vashisth, Bharath Shekar, Shalivahan Srivastava
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Observations of a peculiar coronal wave inside a pseudo-streamer structure Mott insulating phase and coherent-incoherent crossover across magnetic phase transition in 2D antiferromagnetic CrSBr Flow pattern and wave propagation induced by local energy deposition at droplet surface A 316 stainless steel rod impacts with a rigid flat: Theory, experiment, and numerical simulation New theoretical information for hybrid meson search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1