Doxorubicin PK/PD modeling in multiple myeloma: towards in silico trials.

IF 5.7 2区 生物学 Q1 BIOLOGY Biology Direct Pub Date : 2025-03-21 DOI:10.1186/s13062-025-00626-x
Daniele Andrean, Francesco Da Ros, Mario Mazzucato, Morten Gram Pedersen, Roberto Visentin
{"title":"Doxorubicin PK/PD modeling in multiple myeloma: towards in silico trials.","authors":"Daniele Andrean, Francesco Da Ros, Mario Mazzucato, Morten Gram Pedersen, Roberto Visentin","doi":"10.1186/s13062-025-00626-x","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOXO) is a well-known chemotherapy drug, which is widely used in the treatment of Multiple Myeloma (MM), a treatable but not curable type of blood cancer. Here, we propose a pharmacokinetics and pharmacodynamics (PK/PD) simulation environment, aimed at facilitating the optimization of DOXO treatment regimens in MM treatment. The resulting model has a transparent mechanistic structure, which facilitates its use and interpretation. The simulator was developed using a combination of experimental and modeling techniques, starting from in vitro PK/PD experiments conducted on MM cells. In our previous work, we carefully developed a PK model for DOXO in MM cells by fitting experimental data. We now devise a PD model from in vitro data investigating the effect of different concentrations of DOXO on cell growth and death in MM cell populations. The PK model is extended to enable a clear mechanistic link between the PK and the PD models, hence providing a complete PK/PD simulator. We show how the mathematical model can be exploited to simulate different DOXO administration protocols with different dosages, repetitions and exposure times, thus, making it possible to explore the effect of a wide range of treatment protocols easily.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"33"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00626-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Doxorubicin (DOXO) is a well-known chemotherapy drug, which is widely used in the treatment of Multiple Myeloma (MM), a treatable but not curable type of blood cancer. Here, we propose a pharmacokinetics and pharmacodynamics (PK/PD) simulation environment, aimed at facilitating the optimization of DOXO treatment regimens in MM treatment. The resulting model has a transparent mechanistic structure, which facilitates its use and interpretation. The simulator was developed using a combination of experimental and modeling techniques, starting from in vitro PK/PD experiments conducted on MM cells. In our previous work, we carefully developed a PK model for DOXO in MM cells by fitting experimental data. We now devise a PD model from in vitro data investigating the effect of different concentrations of DOXO on cell growth and death in MM cell populations. The PK model is extended to enable a clear mechanistic link between the PK and the PD models, hence providing a complete PK/PD simulator. We show how the mathematical model can be exploited to simulate different DOXO administration protocols with different dosages, repetitions and exposure times, thus, making it possible to explore the effect of a wide range of treatment protocols easily.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Back-Matter (Back Cover)
IF 0 PerspektifPub Date : 2006-04-18 DOI: 10.30742/PERSPEKTIF.V2I1.409
Jurnal Perspektif
Back Matter (Back Issues)
IF 0 Journal of Aviation/Aerospace Education & ResearchPub Date : 2011-01-01 DOI: 10.58940/2329-258x.1636
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
期刊最新文献
Prognostic and immunological implications of protein kinases in gastric cancer: a focus on hub gene ABL2 and its impact on the polarization of M2 macrophages. Single-cell RNA sequencing reveals a new mechanism of endothelial cell heterogeneity and healing in diabetic foot ulcers. Doxorubicin PK/PD modeling in multiple myeloma: towards in silico trials. Dualistic role of ZEB1 and ZEB2 in tumor progression. Plasma N-Glycoproteomics in monozygotic twin pairs discordant for body mass index reveals an obesity signature related to inflammation and iron metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1