Unveiling the hidden role of SDHA in breast cancer proliferation: a novel therapeutic avenue.

IF 5.3 2区 医学 Q1 ONCOLOGY Cancer Cell International Pub Date : 2025-03-21 DOI:10.1186/s12935-025-03746-6
Liyun Yong, Yuan Fang, Lingli Jin, Xiuqin Zhang, Manuel A Luis, Xiaoyan Lin, Shasha Tang, Fengfeng Cai
{"title":"Unveiling the hidden role of SDHA in breast cancer proliferation: a novel therapeutic avenue.","authors":"Liyun Yong, Yuan Fang, Lingli Jin, Xiuqin Zhang, Manuel A Luis, Xiaoyan Lin, Shasha Tang, Fengfeng Cai","doi":"10.1186/s12935-025-03746-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We observed an increased presence of succinate dehydrogenase complex subunit A (SDHA), a mitochondrial enzyme, in breast cancer (BC), which contributes to its proliferation. While SDHA deficiency has been extensively researched in rare disorders, the upregulation of SDHA and its impact on BC remain understudied. The aim of this study is to investigate the role of SDHA in BC.</p><p><strong>Methods: </strong>The mRNA expression of SDHA was analyzed from TCGA, clinical BC tissues and various BC cell lines via qPCR. Immunohistochemistry was also applied to detect the SDHA expression. Our study investigated the functional outcomes of SDHA overexpression and knockdown in BC utilizing clinical BC tissues from patients and various BC cell lines (MDA-MB-453, MDA-MB-468, SKBR3, and MCF-7). Multiple web platforms and software tools, including R, HPA and TISIDB, were employed to perform comprehensive data analysis. SDHA overexpression and siSDHA were transiently transfected into the cancer cells separately to assess expression levels, cellular proliferation, and migration dynamics through colony formation assay, CCK8 assay, wound-healing analysis.</p><p><strong>Results: </strong>We found that the mRNA expression level of SDHA was higher in cancer tissues or cells than in non-cancerous tissues or mammary epithelial cell in TCGA dataset, BC clinical specimens and BC cell lines, respectively. High SDHA expression was associated with poor overall survival (OS, p = 0.016) and disease specific survival (DSS, p = 0.024) in BC patients. Besides, our findings revealed MDA-MB-468, SKBR3 and MCF-7 cells transfected with siSDHA exhibited significantly reduced proliferation and migration capabilities. Conversely, the proliferation and migration abilities of these BC cells significantly increased when transfected with SDHA overexpression.</p><p><strong>Conclusions: </strong>In conclusion, this study highlights the previously underestimated role of SDHA in BC proliferation, presenting a novel avenue for therapeutic intervention.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"108"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927305/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03746-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We observed an increased presence of succinate dehydrogenase complex subunit A (SDHA), a mitochondrial enzyme, in breast cancer (BC), which contributes to its proliferation. While SDHA deficiency has been extensively researched in rare disorders, the upregulation of SDHA and its impact on BC remain understudied. The aim of this study is to investigate the role of SDHA in BC.

Methods: The mRNA expression of SDHA was analyzed from TCGA, clinical BC tissues and various BC cell lines via qPCR. Immunohistochemistry was also applied to detect the SDHA expression. Our study investigated the functional outcomes of SDHA overexpression and knockdown in BC utilizing clinical BC tissues from patients and various BC cell lines (MDA-MB-453, MDA-MB-468, SKBR3, and MCF-7). Multiple web platforms and software tools, including R, HPA and TISIDB, were employed to perform comprehensive data analysis. SDHA overexpression and siSDHA were transiently transfected into the cancer cells separately to assess expression levels, cellular proliferation, and migration dynamics through colony formation assay, CCK8 assay, wound-healing analysis.

Results: We found that the mRNA expression level of SDHA was higher in cancer tissues or cells than in non-cancerous tissues or mammary epithelial cell in TCGA dataset, BC clinical specimens and BC cell lines, respectively. High SDHA expression was associated with poor overall survival (OS, p = 0.016) and disease specific survival (DSS, p = 0.024) in BC patients. Besides, our findings revealed MDA-MB-468, SKBR3 and MCF-7 cells transfected with siSDHA exhibited significantly reduced proliferation and migration capabilities. Conversely, the proliferation and migration abilities of these BC cells significantly increased when transfected with SDHA overexpression.

Conclusions: In conclusion, this study highlights the previously underestimated role of SDHA in BC proliferation, presenting a novel avenue for therapeutic intervention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Finite-time annular domain stability and stabilisation of Itô-type stochastic time-varying systems with Wiener and Poisson noises
IF 2.1 4区 计算机科学International Journal of ControlPub Date : 2021-10-20 DOI: 10.1080/00207179.2021.1996633
Zhiguo Yan, Xiaomin Zhou, Dongkang Ji, M. Zhang
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
期刊最新文献
Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword. Multiomic traits reveal that critical irinotecan-related core regulator FSTL3 promotes CRC progression and affects ferroptosis. The miR-876-5p/SOCS4/STAT3 pathway induced the expression of PD-L1 and suppressed antitumor immune responses. The role of chloride intracellular channel 4 in tumors. Unraveling anoikis in glioblastoma: insights from single-cell sequencing and prognostic modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1