Interfacial Molecule Engineering Builds Tri-Functional Bilayer Silane Films with Hydrophobic Ion Channels for Highly Stable Zn Metal Anode

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-03-24 DOI:10.1002/adfm.202503493
Chang Yan, Fangzhou He, Lukun Feng, Ling Zhu, Peng Li, Jing Tang, Huibing He, Yi Liu, Yuanqin Zhu, Guanghua Li, Dongdong Li
{"title":"Interfacial Molecule Engineering Builds Tri-Functional Bilayer Silane Films with Hydrophobic Ion Channels for Highly Stable Zn Metal Anode","authors":"Chang Yan,&nbsp;Fangzhou He,&nbsp;Lukun Feng,&nbsp;Ling Zhu,&nbsp;Peng Li,&nbsp;Jing Tang,&nbsp;Huibing He,&nbsp;Yi Liu,&nbsp;Yuanqin Zhu,&nbsp;Guanghua Li,&nbsp;Dongdong Li","doi":"10.1002/adfm.202503493","DOIUrl":null,"url":null,"abstract":"<p>The vulnerable Zn electrode interface with uncontrolled Zn dendrite growth and severe parasitic side reactions constrains the practical application of aqueous zinc-ion batteries (AZIBs). General interface engineering of Zn offers a promising approach to relieve these issues but is limited by the confined functionality, low affinity, and additional weight of the protective layer. In this study, a bilayer silane film (SF) is developed with hydrophobic, ion-buffering, and strong interfacial adhesion properties through the precise assembly of silane coupling agents. The well-designed SF layer enables Zn<sup>2+</sup> to undergo continuous processes, including being captured by –CF<sub>3</sub> groups, followed in sequence by inducing desolvation, directed diffusing through silane nanochannels, and buffered diffusion. This multiple process contributed to the accelerated [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> desolvation, stabilized Zn<sup>2+</sup> transport, and inhibited side reactions. Consequently, dendrite-free and highly reversible SF@Zn anodes are realized, exhibiting an ultra-long lifetime (more than 4300 h), a high Coulombic efficiency (CE) (99.1% after 2600 cycles), and a superior full cell capacity retention (83.2% after 1000 cycles). This innovative strategy provides a novel method to enhance Zn anode stability via molecular-level interfacial layer design by multicomponent silane coupling reaction, offering new insights into the advanced interface design for AZIBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 35","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202503493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The vulnerable Zn electrode interface with uncontrolled Zn dendrite growth and severe parasitic side reactions constrains the practical application of aqueous zinc-ion batteries (AZIBs). General interface engineering of Zn offers a promising approach to relieve these issues but is limited by the confined functionality, low affinity, and additional weight of the protective layer. In this study, a bilayer silane film (SF) is developed with hydrophobic, ion-buffering, and strong interfacial adhesion properties through the precise assembly of silane coupling agents. The well-designed SF layer enables Zn2+ to undergo continuous processes, including being captured by –CF3 groups, followed in sequence by inducing desolvation, directed diffusing through silane nanochannels, and buffered diffusion. This multiple process contributed to the accelerated [Zn(H2O)6]2+ desolvation, stabilized Zn2+ transport, and inhibited side reactions. Consequently, dendrite-free and highly reversible SF@Zn anodes are realized, exhibiting an ultra-long lifetime (more than 4300 h), a high Coulombic efficiency (CE) (99.1% after 2600 cycles), and a superior full cell capacity retention (83.2% after 1000 cycles). This innovative strategy provides a novel method to enhance Zn anode stability via molecular-level interfacial layer design by multicomponent silane coupling reaction, offering new insights into the advanced interface design for AZIBs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面分子工程为高稳定锌金属阳极构建具有疏水离子通道的三功能双层硅烷膜
锌枝晶生长不受控制和严重的寄生副反应限制了锌离子电池(AZIBs)的实际应用。锌的通用接口工程提供了一种很有前途的方法来缓解这些问题,但受限于有限的功能、低亲和力和保护层的额外重量。在本研究中,通过硅烷偶联剂的精确组装,制备了具有疏水、离子缓冲和强界面粘附性能的双层硅烷膜(SF)。精心设计的SF层使Zn2+能够经历连续的过程,包括被-CF3基团捕获,随后依次诱导脱溶,通过硅烷纳米通道定向扩散和缓冲扩散。这一多重过程加速了[Zn(H2O)6]2+的脱溶,稳定了Zn2+的输运,抑制了副反应。因此,实现了无枝晶和高度可逆的SF@Zn阳极,表现出超长寿命(超过4300小时),高库仑效率(CE)(2600次循环后99.1%)和优越的全电池容量保持(1000次循环后83.2%)。这一创新策略提供了一种通过多组分硅烷偶联反应设计分子级界面层来提高Zn阳极稳定性的新方法,为azib的高级界面设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
(3,3,3-trifluoropropyl)trimethoxysilane
麦克林
(3-mercaptopropyl)trimethoxysilane
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Strategic Design of Oxophilic Dopants for Active and Durable Alkaline Hydrogen Evolution Reaction Under Seawater (Adv. Funct. Mater. 3/2026) Recycling Spent LiFePO4 Batteries for Fabricating LiI·3H2O and Li2CO3 via Iodine Targeted and Mild Redox Intramolecular Multifunctionalization in a Fused N-Rich Scaffold Produces a Record-Density CF3 Energetic Light-Carbon Double Transfer Membrane for Carbon Fixation in Microalgae Nickel–Iron Clusters on Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1