Fang Lu, Yugang Zhang, Tobias Dwyer, Aaron Michelson, Timothy C. Moore, Hanfei Yan, Kim Kisslinger, Honghu Zhang, Xiaobo Chen, Sharon C. Glotzer, Oleg Gang
{"title":"Octo-diamond crystal of nanoscale tetrahedra with interchanging chiral motifs","authors":"Fang Lu, Yugang Zhang, Tobias Dwyer, Aaron Michelson, Timothy C. Moore, Hanfei Yan, Kim Kisslinger, Honghu Zhang, Xiaobo Chen, Sharon C. Glotzer, Oleg Gang","doi":"10.1038/s41563-025-02185-y","DOIUrl":null,"url":null,"abstract":"<p>Despite their simplicity, tetrahedra can assemble into diverse high- and low-density structures. Here we report a low-density ‘octo-diamond’ structure formed by nanoscale solid tetrahedra with a 64-tetrahedron unit cell containing 8 cubic-diamond subcells. The formed crystal is achiral, but is composed of chiral bilayers with alternating handedness. The left- and right-handed chirality of the bilayers, combined with the plasmonic nature of the gold tetrahedra, produces chiroptical responses at the crystal surface. We uncover that the hydrophobic substrate facilitates the arrangement of tetrahedra into irregular ring-like patterns, creating a critical, uneven topography to stabilize the observed octo-diamond structure. This study reveals a potent way to affect colloidal crystallization through particle–substrate interactions, expanding the nanoparticle self-assembly toolbox.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"71 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02185-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their simplicity, tetrahedra can assemble into diverse high- and low-density structures. Here we report a low-density ‘octo-diamond’ structure formed by nanoscale solid tetrahedra with a 64-tetrahedron unit cell containing 8 cubic-diamond subcells. The formed crystal is achiral, but is composed of chiral bilayers with alternating handedness. The left- and right-handed chirality of the bilayers, combined with the plasmonic nature of the gold tetrahedra, produces chiroptical responses at the crystal surface. We uncover that the hydrophobic substrate facilitates the arrangement of tetrahedra into irregular ring-like patterns, creating a critical, uneven topography to stabilize the observed octo-diamond structure. This study reveals a potent way to affect colloidal crystallization through particle–substrate interactions, expanding the nanoparticle self-assembly toolbox.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.