Mechano-Electrical Buffer Layer at Grain Boundary Induced Solid State Electrolyte with Ultra-High Mechanical Strength and Electrical Insulation for Stable Lithium Metal Batteries
Fan Wang, Ming Zhang, Zixuan Fang, Haiping Zhou, Jintian Wu, Ziqiang Xu, Naixun Zhou, Yihang Zhang, Zhi Zeng, Mengqiang Wu
{"title":"Mechano-Electrical Buffer Layer at Grain Boundary Induced Solid State Electrolyte with Ultra-High Mechanical Strength and Electrical Insulation for Stable Lithium Metal Batteries","authors":"Fan Wang, Ming Zhang, Zixuan Fang, Haiping Zhou, Jintian Wu, Ziqiang Xu, Naixun Zhou, Yihang Zhang, Zhi Zeng, Mengqiang Wu","doi":"10.1016/j.ensm.2025.104198","DOIUrl":null,"url":null,"abstract":"The high sintering temperature, low mechanical properties and instability of lithium metal have consistently hindered the practicality of Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) solid-state electrolytes (SSEs). Herein, a meticulously designed mechano-electrical buffer layer is constructed at grain boundaries (GBs) of LATP by introducing Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (LBO) glass-ceramic. LBO can generate a liquid phase with high Young's modulus and low electronic conductivity at GBs to simultaneously reduce sintering temperature, and enhance the mechanical strength and electrical insulation of LATP. The construction of a mechano-electrical buffer layer at GBs leads to three significant achievements: the reduced sintering temperature from 950 to 750 °C, the enhanced mechanical strength from 9.9 to 117.5 MPa, and the decreased electronic conductivity from 1.2 × 10<sup>-9</sup> to 1.5 × 10<sup>-10</sup> S cm<sup>-1</sup>. When coupled with a solid polymer electrolyte, it effectively protects LATP from internal microcrack propagation and electron attack. Remarkably, the critical current density (CCD) of the modified LATP can reach 2 mA cm<sup>-2</sup>. Moreover, the lithium metal battery with LiFePO<sub>4</sub> demonstrates outstanding stability of more than 1000 cycles with a capacity retention of 93.3% at 0.2C. This work provides new insights into improving the performance of SSEs by enhancing both mechanical strength and electrical insulation.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"70 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high sintering temperature, low mechanical properties and instability of lithium metal have consistently hindered the practicality of Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid-state electrolytes (SSEs). Herein, a meticulously designed mechano-electrical buffer layer is constructed at grain boundaries (GBs) of LATP by introducing Li2B4O7 (LBO) glass-ceramic. LBO can generate a liquid phase with high Young's modulus and low electronic conductivity at GBs to simultaneously reduce sintering temperature, and enhance the mechanical strength and electrical insulation of LATP. The construction of a mechano-electrical buffer layer at GBs leads to three significant achievements: the reduced sintering temperature from 950 to 750 °C, the enhanced mechanical strength from 9.9 to 117.5 MPa, and the decreased electronic conductivity from 1.2 × 10-9 to 1.5 × 10-10 S cm-1. When coupled with a solid polymer electrolyte, it effectively protects LATP from internal microcrack propagation and electron attack. Remarkably, the critical current density (CCD) of the modified LATP can reach 2 mA cm-2. Moreover, the lithium metal battery with LiFePO4 demonstrates outstanding stability of more than 1000 cycles with a capacity retention of 93.3% at 0.2C. This work provides new insights into improving the performance of SSEs by enhancing both mechanical strength and electrical insulation.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.