Constructing Highly Active Sulfur Atoms on MoS₂ Surface via p-p Orbital Covalent Coupling Matching the Liquid-Solid Transition in Lithium-Sulfur Batteries
Helong Jiang, Fangyi Chu, Xiangcun Li, Bo Zhao, Gaohong He
{"title":"Constructing Highly Active Sulfur Atoms on MoS₂ Surface via p-p Orbital Covalent Coupling Matching the Liquid-Solid Transition in Lithium-Sulfur Batteries","authors":"Helong Jiang, Fangyi Chu, Xiangcun Li, Bo Zhao, Gaohong He","doi":"10.1016/j.ensm.2025.104203","DOIUrl":null,"url":null,"abstract":"Herein, we propose a strategy involving Co atoms and Mo vacancies to precisely adjust the orbital orientation of sulfur atoms on MoS<sub>2</sub> surface, accurately modulating their interaction with lithium and sulfur sites in polysulfide species for stronger interactions with short-chain polysulfides, thereby promoting efficient liquid-solid conversion. Through a combination of theoretical modeling and experimental validation, multiple electron-deficient sulfur sites are constructed to demonstrate the <em>p</em><sub>z</sub> orbitals of unsaturated surface sulfur atoms couple strongly with the <em>p</em> orbitals of short-chain polysulfides, facilitating formation of selective S-S bonds via enhanced <em>p-p</em> interactions, thereby accelerating the transition kinetics from Li<sub>2</sub>S<sub>4</sub> to Li<sub>2</sub>S<sub>2</sub>/Li<sub>2</sub>S. This selective coupling is driven by sulfur molecular orbital occupation, charge distribution, and lattice matching. Moreover, we construct an electrocatalytic membrane composed of vertically aligned MoS₂ nanosheets and carbon nanotube nanochannels to ensure efficient contact between reactants and catalysts, enabling continuous polysulfide conversion. Consequently, the cell shows ultralow capacity decay (0.022% per cycle over 1000 cycles at 2 C). This study emphasizes manipulation of the 3<em>p</em> orbital orientation of sulfur atoms to form selective dual-coordination, and provides valuable insights for the rational design of advanced electrocatalysts at the atomic level.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"57 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104203","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we propose a strategy involving Co atoms and Mo vacancies to precisely adjust the orbital orientation of sulfur atoms on MoS2 surface, accurately modulating their interaction with lithium and sulfur sites in polysulfide species for stronger interactions with short-chain polysulfides, thereby promoting efficient liquid-solid conversion. Through a combination of theoretical modeling and experimental validation, multiple electron-deficient sulfur sites are constructed to demonstrate the pz orbitals of unsaturated surface sulfur atoms couple strongly with the p orbitals of short-chain polysulfides, facilitating formation of selective S-S bonds via enhanced p-p interactions, thereby accelerating the transition kinetics from Li2S4 to Li2S2/Li2S. This selective coupling is driven by sulfur molecular orbital occupation, charge distribution, and lattice matching. Moreover, we construct an electrocatalytic membrane composed of vertically aligned MoS₂ nanosheets and carbon nanotube nanochannels to ensure efficient contact between reactants and catalysts, enabling continuous polysulfide conversion. Consequently, the cell shows ultralow capacity decay (0.022% per cycle over 1000 cycles at 2 C). This study emphasizes manipulation of the 3p orbital orientation of sulfur atoms to form selective dual-coordination, and provides valuable insights for the rational design of advanced electrocatalysts at the atomic level.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.