PROBAST+AI: an updated quality, risk of bias, and applicability assessment tool for prediction models using regression or artificial intelligence methods

The BMJ Pub Date : 2025-03-24 DOI:10.1136/bmj-2024-082505
Karel G M Moons, Johanna A A Damen, Tabea Kaul, Lotty Hooft, Constanza Andaur Navarro, Paula Dhiman, Andrew L Beam, Ben Van Calster, Leo Anthony Celi, Spiros Denaxas, Alastair K Denniston, Marzyeh Ghassemi, Georg Heinze, André Pascal Kengne, Lena Maier-Hein, Xiaoxuan Liu, Patricia Logullo, Melissa D McCradden, Nan Liu, Lauren Oakden-Rayner, Karandeep Singh, Daniel S Ting, Laure Wynants, Bada Yang, Johannes B Reitsma, Richard D Riley, Gary S Collins, Maarten van Smeden
{"title":"PROBAST+AI: an updated quality, risk of bias, and applicability assessment tool for prediction models using regression or artificial intelligence methods","authors":"Karel G M Moons, Johanna A A Damen, Tabea Kaul, Lotty Hooft, Constanza Andaur Navarro, Paula Dhiman, Andrew L Beam, Ben Van Calster, Leo Anthony Celi, Spiros Denaxas, Alastair K Denniston, Marzyeh Ghassemi, Georg Heinze, André Pascal Kengne, Lena Maier-Hein, Xiaoxuan Liu, Patricia Logullo, Melissa D McCradden, Nan Liu, Lauren Oakden-Rayner, Karandeep Singh, Daniel S Ting, Laure Wynants, Bada Yang, Johannes B Reitsma, Richard D Riley, Gary S Collins, Maarten van Smeden","doi":"10.1136/bmj-2024-082505","DOIUrl":null,"url":null,"abstract":"The Prediction model Risk Of Bias ASsessment Tool (PROBAST) is used to assess the quality, risk of bias, and applicability of prediction models or algorithms and of prediction model/algorithm studies. Since PROBAST’s introduction in 2019, much progress has been made in the methodology for prediction modelling and in the use of artificial intelligence, including machine learning, techniques. An update to PROBAST-2019 is thus needed. This article describes the development of PROBAST+AI. PROBAST+AI consists of two distinctive parts: model development and model evaluation. For model development, PROBAST+AI users assess quality and applicability using 16 targeted signalling questions. For model evaluation, PROBAST+AI users assess the risk of bias and applicability using 18 targeted signalling questions. Both parts contain four domains: participants and data sources, predictors, outcome, and analysis. Applicability of the prediction model is rated for the participants and data sources, predictors, and outcome domains. PROBAST+AI may replace the original PROBAST tool and allows all key stakeholders (eg, model developers, AI companies, researchers, editors, reviewers, healthcare professionals, guideline developers, and policy organisations) to examine the quality, risk of bias, and applicability of any type of prediction model in the healthcare sector, irrespective of whether regression modelling or AI techniques are used. In healthcare, prediction models or algorithms (hereafter referred to as prediction models) estimate the probability of a health outcome for individuals. In the diagnostic setting—including screening and monitoring—the model typically aims to predict or classify the presence of a particular outcome, such as a disease or disorder. In the prognostic setting the model aims to predict a future outcome—typically health related—in patients with a diagnosis of a particular disease or disorder, or in the general population. The primary use of a prediction model in healthcare is to support individual healthcare counselling and shared decision making on, for example, subsequent medical testing, …","PeriodicalId":22388,"journal":{"name":"The BMJ","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The BMJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmj-2024-082505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Prediction model Risk Of Bias ASsessment Tool (PROBAST) is used to assess the quality, risk of bias, and applicability of prediction models or algorithms and of prediction model/algorithm studies. Since PROBAST’s introduction in 2019, much progress has been made in the methodology for prediction modelling and in the use of artificial intelligence, including machine learning, techniques. An update to PROBAST-2019 is thus needed. This article describes the development of PROBAST+AI. PROBAST+AI consists of two distinctive parts: model development and model evaluation. For model development, PROBAST+AI users assess quality and applicability using 16 targeted signalling questions. For model evaluation, PROBAST+AI users assess the risk of bias and applicability using 18 targeted signalling questions. Both parts contain four domains: participants and data sources, predictors, outcome, and analysis. Applicability of the prediction model is rated for the participants and data sources, predictors, and outcome domains. PROBAST+AI may replace the original PROBAST tool and allows all key stakeholders (eg, model developers, AI companies, researchers, editors, reviewers, healthcare professionals, guideline developers, and policy organisations) to examine the quality, risk of bias, and applicability of any type of prediction model in the healthcare sector, irrespective of whether regression modelling or AI techniques are used. In healthcare, prediction models or algorithms (hereafter referred to as prediction models) estimate the probability of a health outcome for individuals. In the diagnostic setting—including screening and monitoring—the model typically aims to predict or classify the presence of a particular outcome, such as a disease or disorder. In the prognostic setting the model aims to predict a future outcome—typically health related—in patients with a diagnosis of a particular disease or disorder, or in the general population. The primary use of a prediction model in healthcare is to support individual healthcare counselling and shared decision making on, for example, subsequent medical testing, …
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PROBAST+AI:使用回归或人工智能方法的预测模型的最新质量,偏差风险和适用性评估工具
预测模型偏倚风险评估工具(PROBAST)用于评估预测模型或算法以及预测模型/算法研究的质量、偏倚风险和适用性。自 PROBAST 于 2019 年推出以来,预测建模方法和人工智能(包括机器学习)技术的使用取得了很大进展。因此,需要对 PROBAST-2019 进行更新。本文介绍 PROBAST+AI 的发展情况。PROBAST+AI 包括两个不同的部分:模型开发和模型评估。在模型开发方面,PROBAST+AI 用户使用 16 个有针对性的信号问题来评估质量和适用性。对于模型评估,PROBAST+AI 用户使用 18 个有针对性的信号问题来评估偏差风险和适用性。两部分都包含四个领域:参与者和数据源、预测因子、结果和分析。预测模型的适用性根据参与者和数据源、预测因子和结果领域进行评分。PROBAST+AI 可取代原有的 PROBAST 工具,并允许所有主要利益相关者(如模型开发者、人工智能公司、研究人员、编辑、评审人员、医疗保健专业人员、指南制定者和政策组织)检查医疗保健领域任何类型预测模型的质量、偏差风险和适用性,无论是否使用回归建模或人工智能技术。在医疗保健领域,预测模型或算法(以下简称 "预测模型")对个人健康结果的概率进行估计。在诊断环境中,包括筛查和监测,模型通常旨在预测或分类特定结果的存在,如疾病或失调。在预后环境中,模型的目的是预测未来的结果--通常是与健康相关的结果--包括被诊断出患有某种疾病或失调的患者,或普通人群。预测模型在医疗保健中的主要用途是为个人医疗保健咨询和共同决策提供支持,例如后续的医疗测试、...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preimplantation genetic testing for aneuploidy versus no genetic testing in couples undergoing intracytoplasmic sperm injection for severe male infertility: multicentre, open label, randomised controlled trial. Effect of adjuvant carboplatin intensified chemotherapy versus standard chemotherapy on survival in women with high risk, early stage, triple negative breast cancer (CITRINE): randomised, open label phase 3 trial. Medical education departments should receive direct funding. Adjuvant carboplatin for high risk triple negative breast cancer. Is the NHS the main loser in the US-UK drug agreement?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1