{"title":"High accuracy analysis of three-dimensional axisymmetric nonlinear boundary integral equations","authors":"Hu Li , Jin Huang","doi":"10.1016/j.enganabound.2025.106220","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the numerical solutions of three-dimensional axisymmetric nonlinear boundary integral equations with logarithmic kernel. A numerical algorithm with using extrapolation twice is developed to solve the equations, which possesses the low computing complexities and high accuracy. The asymptotic compact operator theory is used to prove the convergence of the algorithm. The efficiency of the algorithm is illustrated by numerical examples.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"176 ","pages":"Article 106220"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725001080","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the numerical solutions of three-dimensional axisymmetric nonlinear boundary integral equations with logarithmic kernel. A numerical algorithm with using extrapolation twice is developed to solve the equations, which possesses the low computing complexities and high accuracy. The asymptotic compact operator theory is used to prove the convergence of the algorithm. The efficiency of the algorithm is illustrated by numerical examples.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.