In situ synthesis of ultrathin MOF-808 membranes exhibiting superior antibiotic desalination

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2025-03-17 DOI:10.1016/j.memsci.2025.123961
Mingming Wu , Kunpeng Yu , Jiahui Yan , Yumei Meng , Yanwei Sun , Taotao Ji , Chen Wang , Wenwen Dong , Yi Liu , Wenjing Hu , Yi Liu
{"title":"In situ synthesis of ultrathin MOF-808 membranes exhibiting superior antibiotic desalination","authors":"Mingming Wu ,&nbsp;Kunpeng Yu ,&nbsp;Jiahui Yan ,&nbsp;Yumei Meng ,&nbsp;Yanwei Sun ,&nbsp;Taotao Ji ,&nbsp;Chen Wang ,&nbsp;Wenwen Dong ,&nbsp;Yi Liu ,&nbsp;Wenjing Hu ,&nbsp;Yi Liu","doi":"10.1016/j.memsci.2025.123961","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-scale structural optimization has been proven to significantly enhance separation performance of metal–organic framework (MOF) membranes. Aiming at high-efficiency antibiotic desalination, in this work, we developed an in situ modulation strategy to synthesize defect-rich ultrathin MOF-808 membrane on tubular substrate. Among various synthetic parameters, addition of trifluoroacetic acid (TFA) as competitive modulator not only enhanced missing-linker number within the framework but also facilitated heterogeneous nucleation, thus enabling precise control over the multi-scale structure of MOF-808 membrane. Obtained membrane achieved not only rejection rate as low as 8.9 % for NaCl but also near-complete rejection of diverse antibiotics (e.g., 100 % for Rifampicin and Bacitracin, 99.8 % for Berberine chloride, and 99.6 % for Tetracycline). Of particular note, our membrane exhibited excellent NaCl/antibiotic separation factor (SF) of 787 with high water flux of 11.95 L m<sup>−2</sup> h<sup>−1</sup>, which far surpassed state-of-the-art MOF membranes as reported in the literature. Moreover, our membrane displayed excellent operation stability over 10-cycle continuous operation, demonstrating great promise for practical antibiotic desalination in pharmaceutical industry.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"724 ","pages":"Article 123961"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825002741","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-scale structural optimization has been proven to significantly enhance separation performance of metal–organic framework (MOF) membranes. Aiming at high-efficiency antibiotic desalination, in this work, we developed an in situ modulation strategy to synthesize defect-rich ultrathin MOF-808 membrane on tubular substrate. Among various synthetic parameters, addition of trifluoroacetic acid (TFA) as competitive modulator not only enhanced missing-linker number within the framework but also facilitated heterogeneous nucleation, thus enabling precise control over the multi-scale structure of MOF-808 membrane. Obtained membrane achieved not only rejection rate as low as 8.9 % for NaCl but also near-complete rejection of diverse antibiotics (e.g., 100 % for Rifampicin and Bacitracin, 99.8 % for Berberine chloride, and 99.6 % for Tetracycline). Of particular note, our membrane exhibited excellent NaCl/antibiotic separation factor (SF) of 787 with high water flux of 11.95 L m−2 h−1, which far surpassed state-of-the-art MOF membranes as reported in the literature. Moreover, our membrane displayed excellent operation stability over 10-cycle continuous operation, demonstrating great promise for practical antibiotic desalination in pharmaceutical industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄MOF-808膜的原位合成具有优异的抗生素脱盐性能
多尺度结构优化可以显著提高金属有机骨架膜的分离性能。以高效抗生素脱盐为目标,本文提出了一种在管状基质上合成富缺陷超薄MOF-808膜的原位调制策略。在各种合成参数中,加入三氟乙酸(TFA)作为竞争调制剂,不仅增加了框架内缺失连接子的数量,而且促进了非均相成核,从而可以精确控制MOF-808膜的多尺度结构。所获得的膜不仅对NaCl的排异率低至8.9%,而且对各种抗生素的排异率也接近完全(例如,对利福平和杆菌肽的排异率为100%,对氯化小檗碱的排异率为99.8%,对四环素的排异率为99.6%)。值得注意的是,我们的膜具有787的优异的NaCl/抗生素分离因子(SF)和11.95 L m−2 h−1的高水通量,远远超过了文献中报道的最先进的MOF膜。此外,我们的膜在10个周期的连续操作中表现出良好的操作稳定性,在制药行业的实际抗生素脱盐中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Brilliant yellow
麦克林
Calcein
麦克林
Malachite green
麦克林
formic acid
麦克林
zirconyl chloride octahydrate
麦克林
1,3,5-benzenetricarboxylic acid
麦克林
TFA
麦克林
NaCl
麦克林
Rifampicin
麦克林
Bacitracin
麦克林
Berberine chloride
麦克林
Tetracycline
麦克林
Congo red
麦克林
Methyl blue
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Editorial Board Asymmetry of diffusion permeability of ion-exchange membranes: Modeling and experiment Water permeability of ultrathin polyamide membranes: a computation study from molecular to macro scale Proton donor-induced phase deposition in aramid nanofiber membranes for efficient osmotic energy harvesting Rational design of pendant thiazole functionalized polyarylenes and their applications in high temperature proton exchange membrane fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1