The effect of replacing fly ash with GGBFS on the fracture parameters of geopolymer concrete

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2025-03-19 DOI:10.1016/j.matlet.2025.138394
Mohammad Reza Abbasi Zargaleh , Moosa Mazloom , Mojtaba Jafari Samimi , Mohammad Hassan Ramesht
{"title":"The effect of replacing fly ash with GGBFS on the fracture parameters of geopolymer concrete","authors":"Mohammad Reza Abbasi Zargaleh ,&nbsp;Moosa Mazloom ,&nbsp;Mojtaba Jafari Samimi ,&nbsp;Mohammad Hassan Ramesht","doi":"10.1016/j.matlet.2025.138394","DOIUrl":null,"url":null,"abstract":"<div><div>Given the abundance, reduced cost, and environmental advantages associated with the utilization of ground granulated blast furnace slag (GGBFS) as a substitute for fly ash, this investigation examines the influence of GGBFS replacement levels of 5, 10, 15, 20, 25, and 30 % on the fracture behavior of lightweight fly ash-based geopolymer concrete (LWFCGC). Concrete specimens were produced using different proportions of GGBFS and fly ash and cured at 80 °C. Subsequently, they were subjected to compressive, tensile, and three-point bending tests. The results indicate that replacing fly ash with GGBFS significantly influences the mechanical properties of geopolymer concrete. Generally, increasing the GGBFS replacement percentage up to 20 % led to higher compressive strength and reduced porosity. However, increasing the GGBFS from 20 % to 30 % led to lower compressive strength. Increasing the replacement percentage from 0 % to 30 % resulted in an increase in fracture toughness from 16.73 to 27.49 MPa√mm and fracture energy from 54.9 to 156.06 N/m. In conclusion, this study shows that GGBFS can be a suitable substitute for fly ash in geopolymer concrete to some extent. By carefully selecting the ratio of GGBFS to fly ash, geopolymer concrete with desirable mechanical properties, fracture parameters, and durability can be achieved.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"390 ","pages":"Article 138394"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25004239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the abundance, reduced cost, and environmental advantages associated with the utilization of ground granulated blast furnace slag (GGBFS) as a substitute for fly ash, this investigation examines the influence of GGBFS replacement levels of 5, 10, 15, 20, 25, and 30 % on the fracture behavior of lightweight fly ash-based geopolymer concrete (LWFCGC). Concrete specimens were produced using different proportions of GGBFS and fly ash and cured at 80 °C. Subsequently, they were subjected to compressive, tensile, and three-point bending tests. The results indicate that replacing fly ash with GGBFS significantly influences the mechanical properties of geopolymer concrete. Generally, increasing the GGBFS replacement percentage up to 20 % led to higher compressive strength and reduced porosity. However, increasing the GGBFS from 20 % to 30 % led to lower compressive strength. Increasing the replacement percentage from 0 % to 30 % resulted in an increase in fracture toughness from 16.73 to 27.49 MPa√mm and fracture energy from 54.9 to 156.06 N/m. In conclusion, this study shows that GGBFS can be a suitable substitute for fly ash in geopolymer concrete to some extent. By carefully selecting the ratio of GGBFS to fly ash, geopolymer concrete with desirable mechanical properties, fracture parameters, and durability can be achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GGBFS替代粉煤灰对地聚合物混凝土断裂参数的影响
考虑到使用磨粒高炉渣(GGBFS)替代粉煤灰具有丰富、低成本和环境优势,本研究考察了GGBFS替代水平为5%、10%、15%、20%、25%和30%对轻质粉煤灰基地聚合物混凝土(LWFCGC)断裂行为的影响。采用不同比例的GGBFS和粉煤灰配制混凝土试件,在80℃下养护。随后,对它们进行了压缩、拉伸和三点弯曲试验。结果表明,用GGBFS代替粉煤灰对地聚合物混凝土的力学性能有显著影响。通常,将GGBFS替换率提高到20%,可以提高抗压强度并降低孔隙率。然而,将GGBFS从20%增加到30%会导致抗压强度降低。当替代率从0%增加到30%时,断裂韧性从16.73增加到27.49 MPa / mm,断裂能从54.9增加到156.06 N/m。综上所述,本研究表明GGBFS在一定程度上可以替代粉煤灰用于地聚合物混凝土。通过合理选择GGBFS与粉煤灰的配比,可以使地聚合物混凝土具有理想的力学性能、断裂参数和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Kinetic partitioning drives size-dependent CNT core–shell inversion in UHMWPE microspheres Magnetic Cu2-xS/Fe3O4 composite-promoted aerobic oxidation of alcohols to aldehydes Morphological changes of Fe66Cr10Nb5B19 metallic glass particles in a copper matrix during spark plasma sintering Tailoring low magnetic susceptibility and high strength in Zr-Mo-Sn alloys via Mo content control Effect of prior low cycle fatigue on tensile properties of a 10 % Cr martensitic steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1